U.S. Fish & Wildlife Service

Stream Assessment Protocol

Anne Arundel County Maryland

CBFO-S09-01 January 2009

STREAM ASSESSMENT PROTOCOL ANNE ARUNDEL COUNTY, MARYLAND

By: Richard R. Starr

Stream Habitat Assessment and Restoration Program U.S. Fish and Wildlife Service Chesapeake Bay Field Office

CBFO-S01-09

Prepared in cooperation with: The Anne Arundel County Department of Public Works – Watershed, Ecosystems, and Restoration Services

> Annapolis, Maryland January 2009

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	PROTOCOL OBJECTIVES	1
III.	ASSESSMENT OVERVIEW	1
IV.	POINT OF INVESTIGATION	2
V.	RAPID STREAM ASSESSMENT	2
A.	Rapid Stream Characterization	3
	1. Watershed Characterization	
	2. Bankfull Validation	5
	3. Stream Characterization and Classification	7
B.	Rapid Stream Stability Assessment	8
	1. Lateral Stability	
	2. Vertical Stability	.13
	3. Overall Reach Stability	.17
VI.	DETAILED STREAM ASSESSMENT	. 20
A.	Detailed Stream Assessment Methodology	
B.	Stream Stability Condition Rating	
GLO	DSSARY	. 23
LIT	ERATURE CITED	. 26

APPENDIX A – STANDARD ASSESSMENT FORMS APPENDIX B – PROCEDURE CHECKLIST

LIST OF FIGURES

Figure 1.	Bankfull channel dimensions as a function of drainage area for	
	Coastal Plain survey sites (n = 14) (McCandless 2003)	6
Figure 2.	Bankfull discharge as a function of drainage area for	
	Western Coastal Plain survey sites (n = 5) (McCandless 2003)	6
Figure 3.	Bankfull channel dimensions and discharge as a function of	
	drainage area for urban watersheds in the coastal plain hydrologic	
	region, Maryland (Powell 2007)	7
Figure 4.	BEHI Assessment Form (Rosgen 2006)	11
Figure 5.	Near bank stress conditions (Rosgen 2001)	12
Figure 6.	Incision Ratio	15
Figure 7.	Example depositional areas (Rosgen 1996)	16
Figure 8.	Various Stream Type Succession Scenarios (Rosgen 2001)	. 19
Figure 9.	Examples of Stream Succession (Rosgen 1996)	20

LIST OF TABLES

Table 1. BEHI Values (Rosgen 2001).	10
Table 2. Management interpretations of various stream types (Rosgen 1996)	18

I. INTRODUCTION

Anne Arundel County Department of Public Works – Watershed, Ecosystems, and Restoration Services, Maryland (County) and the U.S. Fish and Wildlife Service (Service) – Chesapeake Bay Field Office have entered into a cooperative agreement (Agreement # 1902-5041) to conduct stream assessments and investigations. Under the conditions of the agreement, a Scope of Work (SOW) has been approved for the Service to develop a stream assessment protocol for new and re-development projects and an associated training module.

Currently, the Anne Arundel County Office of Planning and Zoning has review and approval responsibility for new and re-development projects. Currently, there are numerous methods used to assess stream stability conditions. The County has requested that the Service develop standard protocols for stream assessment as required under the County's Stormwater Management Practices and Procedures Manual and to provide instruction and training on applying the protocols.

This document contains a rapid stream assessment protocol and a detailed stream assessment protocol. This document also provides guidelines and standard forms for both protocols.

II. PROTOCOL OBJECTIVES

Objectives of Protocol

- To provide the County and its contractors with a standardized method for determining existing stream character and stability condition.
- The protocol should allow for comparison between reviewers (*e.g. county regulators and developers*).
- The protocol should be rapid, quantitative, and definitive.

III. ASSESSMENT OVERVIEW

The stream assessment protocol consists of three main components: 1) limits of investigation, 2) rapid stream assessment, and 3) detailed stream assessment. The intended use of this assessment protocol is to determine existing stream character and stability condition.

The use of the rapid stream assessment protocol, as with most rapid methods, requires well-experienced practitioners. While reducing subjectivity was a goal during the development of the assessment protocol, some assessment parameters require skilled practitioners to assess correctly. Assessors must be knowledgeable in fluvial geomorphic and watershed processes and be well trained and experienced in identifying bankfull geomorphic indicators.

IV. POINT OF INVESTIGATION

The point of investigation defines the limits of the assessment, hereafter referred to as Assessment Reach. The Assessment Reach should be from the proposed development point of origin, downstream to the point where the influence of the proposed development no longer affects the receiving stream. Many factors can influence how far downstream impacts are realized by a proposed development. One of the methods to determine the Assessment Reach is through hydrologic modeling. Hydrologic modeling can show where increases of storm water runoff, from the proposed development, increases the volume of stream flows. However, modeling is not required as part of the initial impact assessment. Later in the assessment process, if the proposed development is determined to have impacts on the stream, a hydrologic model is required to redefine the limits of assessment.

Currently Anne Arundel County stormwater management regulations require a developer to determine the limits of assessment based on a man-made or natural restriction point downstream of the proposed development. While the stream reach within the restricted area may remain stable, the increased impervious surfaces as part of the proposed development could produce a significant flow regime change resulting in stream adjustments of the reach below the restricted area. Research (Schuler 1994) has shown that impacts can occur to streams with watersheds having as little as 6 to 15 percent impervious surfaces.

Based on the potential for flow regime changes to impact stream condition, compute the ratio of the proposed development project area to the watershed drainage area to determine of the limits of assessment. The proposed development area cannot represent greater than 10 percent of the watershed at the point where the proposed development discharges into the stream. If the proposed development area is less than 10 percent of the watershed, no further assessments are required. If the proposed development area is greater than 10 percent of the watershed, then the limits of assessment is determined by the point, downstream of the proposed development, where the proposed development area no longer represents more than 10 percent of the watershed. For example, if the proposed development is 10 acres and the watershed drainage area is 100 acres, then no further assessments are required. However, if the proposed development is 10 acres and the watershed drainage area is 50 acres, then further assessment is required to a point downstream where the watershed is 100 acres. Assessment Reaches shall not extend into stream reaches subject to tidal control.

V. RAPID STREAM ASSESSMENT

The rapid stream assessment has two components: stream characterization and stability assessment. The data collected as part of the stream characterization includes general watershed characteristics, bankfull determination, and stream classification. The data collected as part of the stream stability assessment includes vertical stability, lateral stability, and overall reach stability. The information within this section describes the assessment parameters and the procedures to implement the assessment method. Each

parameter section within the assessment form is shown in this section as part of the parameter description. The rapid stream assessment forms are in Appendix A. A checklist of the procedures is in Appendix B

A rapid assessment shall be completed for each Rosgen stream type and stability condition existing within the Assessment Reach. If the Assessment Reach stream characteristics are not homogenous, divide the Assessment Reach into sub reaches. For example, two Rosgen C4 stream types may exist within the Assessment Reach. One C4 reach is stable and the other C4 reach has widespread instability. A separate assessment form must be completed for each of these reaches. Assessors should determine if there are areas within the Assessment Reach that have noticeable differences in the following steam characteristics when determining when more than one rapid assessment is required for the Assessment Reach:

- Dominate streambank stability condition
- Stream channel incision
- Stream channel entrenchment
- Sinuosity

Photo documentation is required with each rapid assessment form completed. The photo documentation should support the assessment determinations recorded on the assessment forms. At the minimum, the following items should be photographed:

- Overall assessment area
- Streambank stability conditions
- Head cuts and/or bed aggradation areas, if existing
- Infrastructure (e.g., utilities, bridges, etc.), if existing
- Adjacent land uses/vegetation

A. Rapid Stream Characterization

1. Watershed Characterization

There are two primary purposes for the watershed characterization data. First, is to gain an understanding of how land uses and land cover influence stream character and stability through changes in flow regime. The second is to gain an understanding of how the immediate land uses and land cover influence the stream within the Assessment Reach.

Flow regime can vary greatly depending upon the landscape character of the watershed. The rate and volume of flow that reaches a stream system has a direct relationship to stream characteristics, stream stability conditions, and bankfull discharge. A watershed that is highly developed will have a different flow regime than a predominantly forested watershed. The stormwater runoff from a highly developed watershed will reach the stream rapidly, in a large volume, and have very little retention and groundwater recharge. This type of flow regime increases stream energy and sediment transport capability. Consequently, streams in urban watershed are typically unstable and characterized as deeply incised with a high width to depth ratio. While in a predominantly forest watershed, runoff will reach the stream more slowly and in less volume resulting in a lower stream energy and greater retention and groundwater recharge.

WATERSHED CHARACTERIZATION

Land use/Land cover Data (from County, MBSS data, GIS Hydro, or Other):

% Urban: _____ % Suburb: _____ % Agr.: _____ % Forest: _____ % Imp.: ____

Valley Type or Description:

Adjacent LU/LC:

Significant Upstream Land Cover and/or Land uses that influence stream character and stability:

Land uses and land cover adjacent to and upstream of the Assessment Reach also influence stream characteristics and stream stability. Dense development upstream of a stream can create concentrated flows, which in turn increases stream energy thus resulting in the potential for stream erosion. Conversely, a well vegetated riparian corridor provides stability support through the rooting systems of the vegetation. Knowledge of adjacent land uses and land cover is required information to develop an understanding of the overall character and stability condition of the stream.

The data collection for the percentages of land use and land cover is an office exercise. Varieties of GIS sources exist to obtain this data. Some GIS sources include the County, Maryland Department of Natural Recourses, Maryland State Highway GIS Hydro, and Maryland Office of Planning. Record on the assessment form what source was used to obtain land use and land cover percentages.

The valley type of the Assessment Reach influences the character of a stream as well as the response of a stream to land use and land cover changes. Valley type description can be obtained by using Rosgen's valley type classification system (Rosgen 2006) or by providing a brief narrative describing valley shape, slope, geology, etc.

Use field observations and aerial photography to record adjacent land use and land cover. If vegetation exists on the streambank and within the riparian buffer, provide a description of the vegetation. The vegetation description should include the type of vegetation (e.g., annual and perennial vegetation, grasses, vines, shrubs, understory, and canopy) and location of vegetation. Describe the location of vegetation on the streambank in relation to bankfull (e.g., entire bank, mostly on the upper portion of the bank above bankfull, sporadically across the bank above and below bankfull, etc.), provide a percentage of the bank covered by vegetation. Provide the width and density of the riparian buffer and the percentage of the reach assessment with a riparian buffer. The density is a percentage of the ground covered by the vegetation within the riparian buffer.

	BANKFULL VALIDATIO	N
Regional Curve:	Rural Coastal Plain Curve	Urban Coastal Plain Curve
BF Cross Sectional	Area BF Depth	
BF Width	BF Dischar	ge

2. Bankfull Validation

Bankfull discharge characterizes the range of discharges that is effective in shaping and maintaining a stream. Over time, geomorphic processes adjust the stream capacity and shape to accommodate the bankfull discharge within the stream. Bankfull discharge is strongly correlated to many important stream morphological features (*e.g.*, bankfull width, drainage area, etc.) and is the critical parameter used in characterizing a stream and assessing stream stability. Bankfull discharge is also a critical parameter used in natural channel design procedures as a scale factor to convert morphological parameters from a stable reach of one size to a disturbed reach of another size.

The validation of bankfull starts as an office exercise by using the regional curves (Figures 1 and 2) developed by the U.S. Fish and Wildlife Service (McCandless 2003) and Clear Creek Consulting (Powell 2007) (Figure 3). Use the Service regional curves if the impervious surfaces of the watershed are less than 15 percent and the Clear Creeks Consulting curve if the impervious surfaces of the watershed are greater than 15 percent. Indicate on the assessment form which curve was used and record the bankfull stream dimensions and discharge. Use this information to validate bankfull field measurements taken as part of the stream characterization and classification section of the assessment form. Note that the Assessment Reach bankfull channel dimensions and discharge may not plot within the data of either curve. If this occurs, consider the drainage area characteristics (i.e., percent imperviousness, basin size, shape, and slope, land use, etc.) and its influence on the flow regime. A steep, narrow-shaped drainage area with high imperviousness may result in a larger volume of storm runoff entering a stream. Whereas a shallow, broad-shaped drainage area that is mostly forested may result in less storm runoff entering a stream.

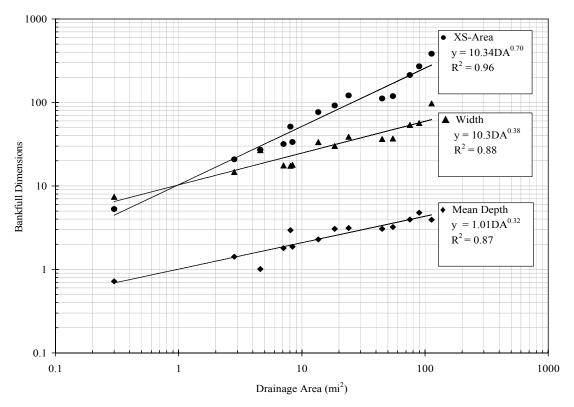


Figure 1. Bankfull channel dimensions as a function of drainage area for Coastal Plain survey sites (n = 14). (McCandless, 2003)

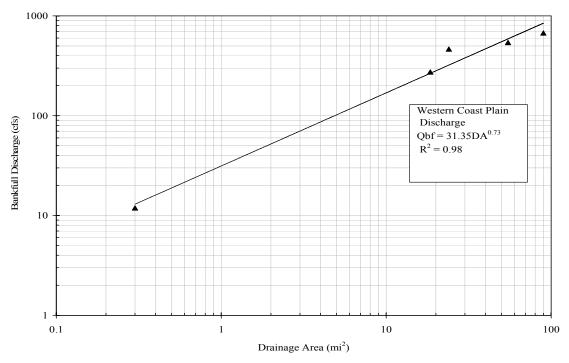


Figure 2. Bankfull discharge as a function of drainage area for Western Coastal Plain survey sites (n = 5). (McCandless, 2003)

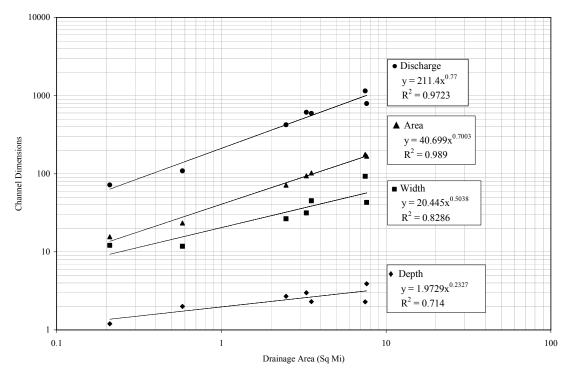


Figure 3. Bankfull channel dimensions and discharge as a function of drainage area for urban watersheds in the coastal plain hydrologic region, Maryland (n = 7). (Powell, 2007)

3. Stream Characterization and Classification

STREAM CHARACTERIZATION AND CLASSIFICATION						
Channel:	Single Thread	Braided	Entrenchment			
BF Width	-		Reach D50			
BF Depth	_		Riffle D84			
WS Slope	_		Sinuosity			
BF Dischar	ge _	· · · · · · · · · · · · · · · · · · ·	Width/Depth Ratio			
Dominate E	3F Feature					
Rosgen Str	eam Type:		·			

The classification of the Assessment Reach is used to standardize the characterization of the stream. The stream classification uses the Rosgen Stream Classification system (Rosgen 1996). This part of the assessment requires the collection of field measurements in relation to the geomorphic feature associated with the bankfull discharge event. Refer to Rosgen (1996) for a description of the required data and field collection procedures.

Compare the field measurements with the stream dimension data derived from the regional curve to ensure the appropriate geomorphic feature was identified as bankfull. Record a description of the geomorphic feature associated with the bankfull discharge on the assessment form. For a detailed discussion on bankfull geomorphic indicators, refer to the report *Maryland Stream Survey: Bankfull Discharge and Channel Characteristics in the Piedmont Hydrologic Region* (McCandless and Everett 2002).

B. Rapid Stream Stability Assessment

1. Lateral Stability

There are five parameters used to determine lateral stability: 1) width/depth ratio, 2) dominant bank erosion hazardous index (BEHI), 3) dominant near bank stress (NBS), 4) presence of bank armoring, and 5) presence of specific lateral erosion causes. The overall lateral stability is determined based on the findings of the individual assessment parameters.

		LATERAL S	STABILITY			
Width/Depth Ratio	0:	Rating:	Stable	Unstable	Э	
Dominant BEHI:	Score:	Rating:	Very Low	Low	Moderate	e High
			Very High	Extrem	е	
Dominant NBS:	Low	Moderate	High	Ext	reme	
Presence of bank	armoring:	Yes No Do	escription:			
Presence of spec	ific lateral e	rosion causes	s: Yes No	Descrip	tion:	
Overall Lateral St	ability:	Stable	Unstable:	Localize	d Wi	despread

The key in determining whether lateral erosion is localized or widespread is whether the lateral erosion is or has the potential to cause system-wide changes to the stream channel dimensions, bed profile, and geometry pattern. If the erosion causes system-wide changes then it is considered widespread lateral instability. Localized lateral instability conditions are typically associated with a specific cause. For example, outfalls, culverts, ford crossings, and localized removal of vegetation cause, in most situations, localized bank erosion.

The Assessment Reach has localized lateral instability if bank erosion is present and the following reach conditions exist:

- The width/depth ratio is stable;
- The dominant BEHI rating is moderate or less;
- The dominant NBS is moderate or less; and
- Less than 20 percent of the streambanks lack vegetation or have site-specific bank erosion within the Assessment Reach.

The Assessment Reach has widespread lateral instability if bank erosion exists and the following conditions exist:

- The dominant BEHI rating is high or greater;
- The width/depth ratio rating is unstable;
- The dominant near bank stress rating is high or extreme; and
- Greater than 50 percent of the streambanks lack vegetation and/or are actively eroding.

Definition of Individual Assessment Parameters

<u>Width/depth Ratio</u> – Width/depth ratio is the ratio of bankfull width to bankfull mean depth in the riffle cross section. The stability rating of width/depth ratio is based on Rosgen stream type. Use the following criteria to determine width/depth ratio rating (Rosgen 1996):

- Rosgen stream type B less than 20 is stable; otherwise unstable
- Rosgen stream type C less than 28 is stable; otherwise unstable
- Rosgen stream types F, G, and D are unstable

Criteria is not listed for Rosgen stream types A and E because if the width/depth ratio is higher than 12, than the stream would classify as a different Rosgen stream type.

<u>Dominant Bank Erodibility Hazardous Index</u> – The Bank Erodibility Hazardous Index (BEHI) assessment method was developed by Rosgen (Rosgen 2001a) to predict the potential for a bank to erode based on several physical parameters. Figure 4 shows the assessment parameters and is the field form used to conduct a BEHI assessment. Table 1 shows the values of the assessment parameters. Refer to Rosgen (2006) for a description on the BEHI data collection procedures.

The dominant BEHI is derived by the bank stability condition that represents the largest portion of all the existing bank stability conditions within the stream Assessment Reach. If there are two bank stability conditions equally representative, select the higher of the two ratings.

<u>Dominant Near Bank Stress</u> – Near bank stress is associated with the shear stress generated by the stream against streambanks. Use Figure 5 to determine the existing near

bank stress conditions within the Assessment Reach. The dominant near bank stress is derived by the near bank stress condition that represents the largest portion of all the existing near bank stress conditions within the stream Assessment Reach. If there are two near bank stress conditions equally representative, select the higher of the two stress ratings. Consider the following factors when determining the NBS rating (Rosgen 2001b):

- The maximum depth location will influence the NBS rating. For example, a cross section with the maximum depth located in the middle has a lower NBS rating than a cross section with the maximum depth located in the outer one third of the stream.
- Chute cutoff return flows and split channels converging against study banks will cause a disproportionate energy distribution in the near bank region and NBS ratings will be extreme.
- Depositional features such as transverse bars and/or central bars will also create a disproportionate distribution of energy in the near bank region and NBS estimate ratings should be adjusted upward due to high velocity gradients. For central bars, estimate both outside banks.
- Evaluate the individual channels of a braided reach separately based on the distribution of energy in the near bank region.

			Bank Er	osion Haza	ard Index \	/alues			
		Bank Erosion Potential							
			Very Low	Low	Moderate	High	Very High	Extreme	
	Bank Height/	Value	1.0 - 1.1	1.11 - 1.19	1.2 - 1.59	1.6 - 2.09	2.1 - 2.8	>2.8	
le	Bankfull Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10	
Variable	Root Depth/	Value	1.0 - 0.9	0.89 - 0.5	0.49 - 0.3	0.29 - 0.15	0.14 - 0.05	<0.05	
/ar	Bank Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10	
	Weighted	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 5.0	<5.0	
Erodibility	Root Density	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10	
dil	Bank Angle	Value	0 - 20	21 - 60	61 - 80	81 - 90	91 - 119	>119	
Ero	Bank Angle	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10	
	Surface	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 10	<10	
	Protection	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10	

Table 1. BEHI Values (Rosgen 2006)

- If the stream slope directly upstream of a study bank is steeper than the average reach slope, adjust the NBS rating upward one rating.
- Exclude depositional areas along the streambanks (e.g., point bars) when determining the dominant near bank stress within the Assessment Reach.

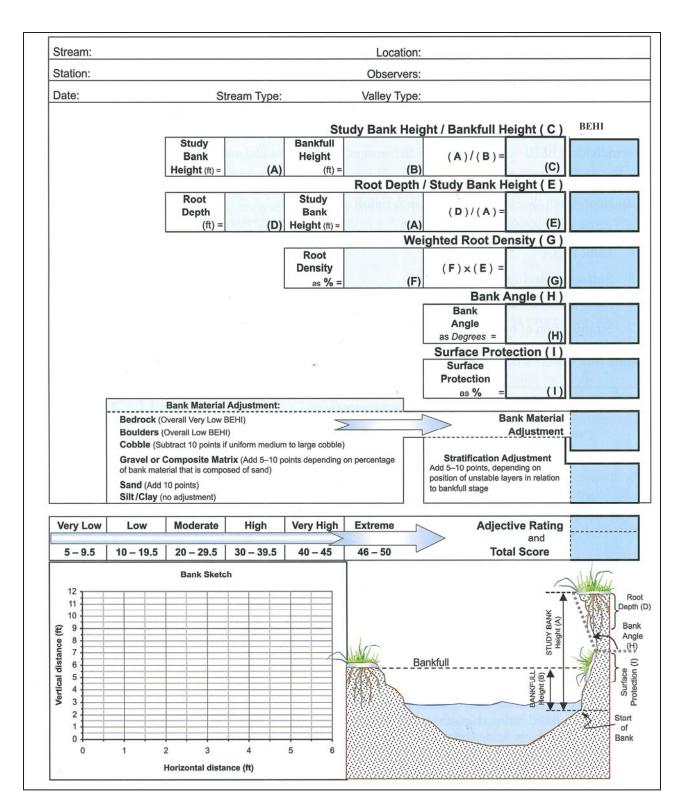


Figure 4. BEHI Assessment Form (Rosgen 2006)

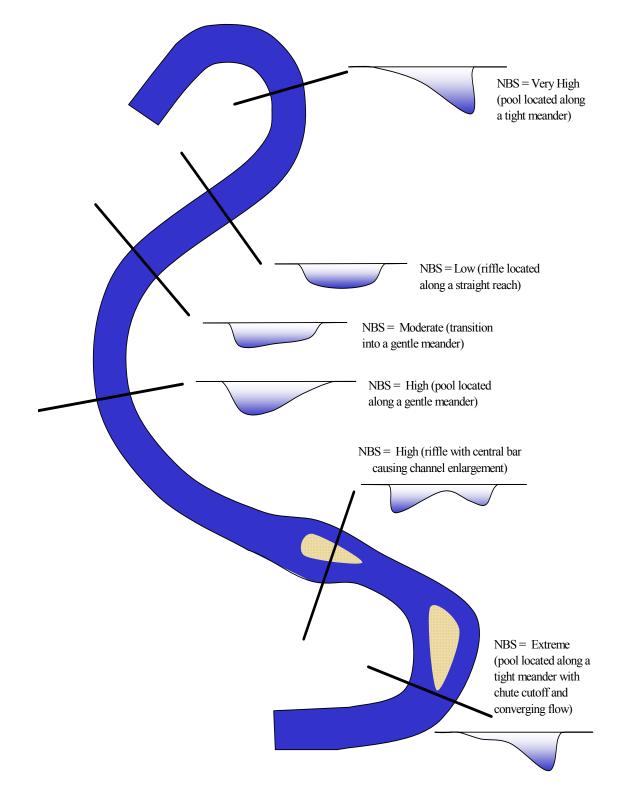


Figure 5. Near bank stress conditions (Rosgen 2001b).

<u>Presence of Bank Armoring</u> – Bank armoring can be natural (e.g., vegetation, boulders, bedrock, etc.) or man-made (riprap, gabions, concrete, sheet piled walls, etc.). If armoring exists, describe the type of armoring, the location of armoring, the percent of bank armored, and the percentage of banks armored within the Assessment Reach. Note whether or not if the armoring is effective in protecting the bank and provide reason for effectiveness (e.g., bank armoring eroding at the toe and subject to failure in the near future).

2. Vertical Stability

	VERTICAL		(
Incision Ratio: Rati	ng: Not Incis	ed Slightly	Moderate	ely Highly	Extremely
Presence of headcut: Yes N	lo Descriptic	n:			
Presence of bedcontrol: Yes	No Descrip	otion:			
Presence of deposition: Yes	No Descrip	tion:			
Bed Features: Riffle/Pool	Riffle/Run	Run/Pool	Plane	Step/Pool	Cascade
Bed Definition: Well Define	ed Mo	derately Wel	l Defined	Poo	orly Defined
Overall Vertical Stability:	Stable	Degrading	Ag	grading	

There are five parameters to determine vertical stability: 1) incision ratio, 2) presence of a headcut, 3) presence of bedcontrol, 4) presence of deposition, and 5) bed features. The first four parameters are clear indicators of vertical stability and the fifth parameter is a supporting indicator. The overall vertical stability is determined based on the findings of the individual assessment parameters. The stream is vertically degrading if any one of the following conditions exists:

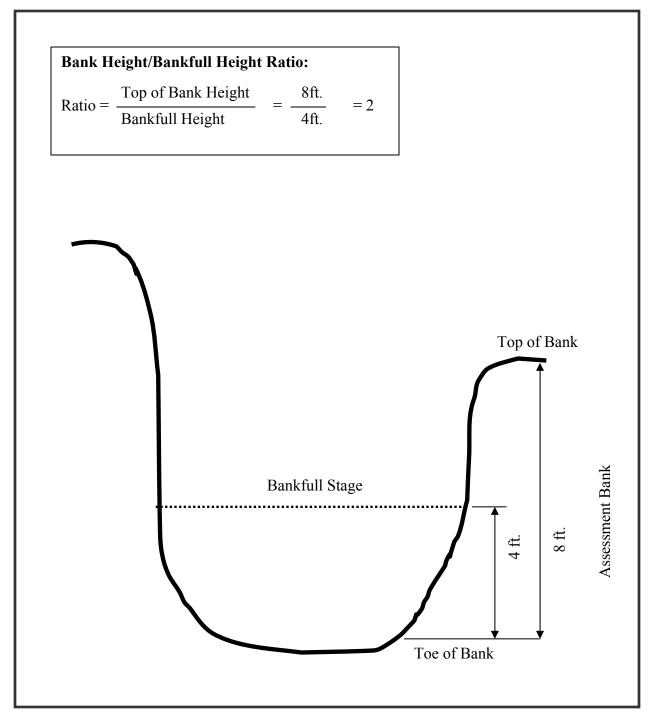
- Incision ratio greater than 1.6;
- Presence of a headcut in any part of the stream reach, even if there is bedcontrol located somewhere within the stream reach; or
- Incision ratio of 1.3 to 1.5 and poorly defined bed features.

The stream is vertically aggrading if the stream has a high width/depth ratio (use the same width/depth ratio ratings outlined in Section V.B1. Lateral Stability), incision ratio of less than 1.0, and there is a significant presence of depositional features. Significance is determined by depositional features that are actively forming throughout the entire

stream reach (e.g., lateral and mid channel bars) and not just point bars located on the inside of a meander bend.

Definition of Individual Assessment Parameters

<u>Incision ratio</u> – Incision ratio is a ratio of the bankfull height to the top of lowest bank height (Figure 6). The following is a list of incision ratios and their corresponding rating based on Rosgen 2001:


- 1.0 No incision
- 1.1 to 1.2 Low incision
- 1.3 to 1.4 Moderate incised
- 1.5 1.6 High incision
- >1.7 Very High incision

<u>Headcut</u> – A headcut is stream erosion represented by a retreat, vertical or nearly vertical of the channel bed. If a headcut exists, describe the height and location (e.g., near the downstream end of the Assessment Reach, in the middle of the Assessment Reach, etc.) of the headcut.

<u>Bed Control</u> – Bed control can be natural (e.g., large woody debris, boulders, bedrock, etc.) or man-made (utility crossings, dams, culverts, etc.). If bed control exists, describe the type, location, and percent of the bed within the Assessment Reach controlled. Note whether or not if the bed control is in potential jeopardy of failing (e.g., under cutting) in the near future and whether it adversely impacts lateral stability (e.g., check dam redirect stream flows towards streambanks).

<u>Depositional Features</u> – The characterization of depositional features is used to determine bed aggradation. A stream that does not have sufficient power to transport sediment load will aggrades. Figure 7 illustrates a variety of depositional features. Categories B1 and B2 represent stable conditions. Categories B3 and B4 represent the beginning of an aggradation problem. Categories B5, B6, B7, and B8 represent streams with moderate to severe aggradation problems. Determine which category that best represents the reach assessment depositional features and state whether the reach is aggrading. A lack of depositional features could indicate vertical degradation and is addressed in the presence of bed features below.

<u>Bed Features</u> – The definition of bed features (e.g., riffles, pools, runs, glides, etc.) is a secondary indicator of streambed stability. A stream reach which pool areas are shallow, because of deposition, is an indicator of aggradation. A stream which the bed features are poorly defined, because of scour, is a potential indication of streambed degradation.

Figure 6: Incision Ratio

Describe what type of bed features exist within the Assessment Reach and how well they are defined. Use the following criteria to determine how well the bed features are defined:

- Well defined greater than 95 percent of the streambed is well defined (pools two to three times deeper, at bankfull, than riffles).
- Moderately defined at least 50 to 70 percent of the streambed is moderately defined (pools one and a half to two times deeper, at bankfull, than riffles).
- Poorly defined greater than 50 percent of the streambed is poorly defined (pools as deep, at bankfull, as riffles or there is no distinction between riffles and pools).

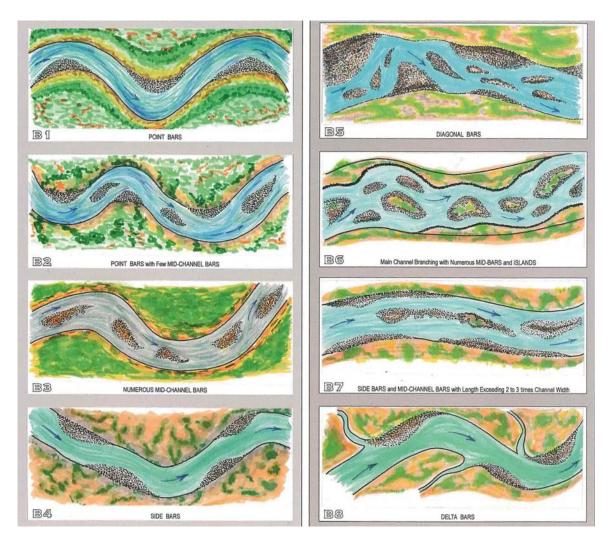


Figure 7. Example depositional areas (Rosgen 1996).

3. Overall Reach Stability

OVERALL REACH STABILITY						
Stream Sensitivity: Very L	.ow Low	Moderate	High Very H	ligh Extreme		
Potential Sediment Supply:	Very Low	Low Moderate	e High Very l	High Extreme		
Recovery Potential: Excel	llent Ver	y Good Good	l Fair Poo	r Very Poor		
Evolution Stability Sequence	e:					
Evolution Stability Trend:	Stable	Degrading	Aggrading	Recovering		
Overall Reach Stability:	Stable	Unstable:	Localized	Widespread		
Potential Cause of Instabilit	y:					

There are four parameters used to determine overall reach stability: 1) stream sensitivity, 2) potential sediment supply, 3) recovery potential, and 4) evolution stability trend. The first three parameters are based on Rosgen stream type and are used as support information in determining overall reach stability. Each Rosgen stream type has a set of specific characteristics that relate to stability condition. Table 2 assigns ratings to these specific characteristics based on their stability conditions and stream type (Rosgen 1996). Use Table 2 to select the appropriate ratings based on the Rosgen stream type of the Assessment Reach. The stream sensitivity, potential sediment supply, and recovery potential ratings of the Assessment Reach are useful pieces of information, along with the vertical and lateral stability ratings, that can assist in determining the overall reach stability rating.

Rosgen (1999, 2001b, 2006) has developed nine various stream type succession scenarios that illustrate phases of stability, instability, and recovery (Figure 8). Knowing the phase of stability and stream type succession of the Assessment Reach provides an understanding of current stability conditions and allows for predictions of future stability conditions. The central tendency of rivers is to seek stability. If a disturbance occurs that results in stream disequilibrium, the central tendency of the stream is to under go adjustments until the original stable form is reestablished (i.e., same Rosgen stream type). This is true even if the stream base level has changed. However, sometimes there are factors (i.e., non-erosive materials, vegetation, etc.) that will influence the direction of stream adjustments and the stream will establish a new stable form (i.e., different Rosgen stream type). Figure 9 is a graphic example that shows stream succession in a cross section and plan view form. Use Figure 8 to select the evolution stability trend that best represents the stability condition of the Assessment Reach based on the lateral and vertical stability data collected. Consider the factors influencing stream adjustment and whether the stream will reestablish its original stable form and establish a new stable form. Then record which phase the Assessment Reach is within the trend (e.g., stable, degrading, aggrading, and recovering).

Stream type	Sensitivity to disturbance ^a	Recovery potential ^b	Sediment supply ^C
A1	very low	excellent	very low
A2	very low	excellent	very low
A3	very high	very poor	very high
A4	extreme	very poor	very high
A5	extreme	very poor	very high
A6	high	poor	high
B1	very low	excellent	very low
B2	very low	excellent	very low
B3	low	excellent	low
B4	moderate	excellent	moderate
B5	moderate	excellent	moderate
B6	moderate	excellent	moderate
C1	low	very good	very low
C2	low	very good	low
C3	moderate	good	moderate
C4	very high	good	high
C5	very high	fair	very high
C6	very high	good	high
D3	very high	poor	very high
D4	very high	poor	very high
D5	very high	poor	very high
D6	high	poor	high
Da4	moderate	good	very low
DA5	moderate	good	low
DA6	moderate	good	very low
E3	high	good	low
E4	very high	good	moderate
E5	very high	good	moderate
26	very high	good	low
F1	low	fair	low
F2	low	fair	moderate
F3	moderate	poor	very high
54	extreme	poor	very high
F5	very high	poor	very high
36	very high	fair	high
31	low	good	low
G2	moderate	fair	moderate
G3	very high	poor	very high
G4	extreme	very poor	very high
G5	extreme	very poor	very high
G6	very high	poor	high

Table 2. Management interpretations of various stream types (Rosgen 1996)

а. b.с. Includes increase in streamflow magnitude and timing and/or sediment increases.

Assumes natural recovery once cause of instability is corrected. Includes suspended and bedload from channel derived sources and/or stream adjacent slopes.

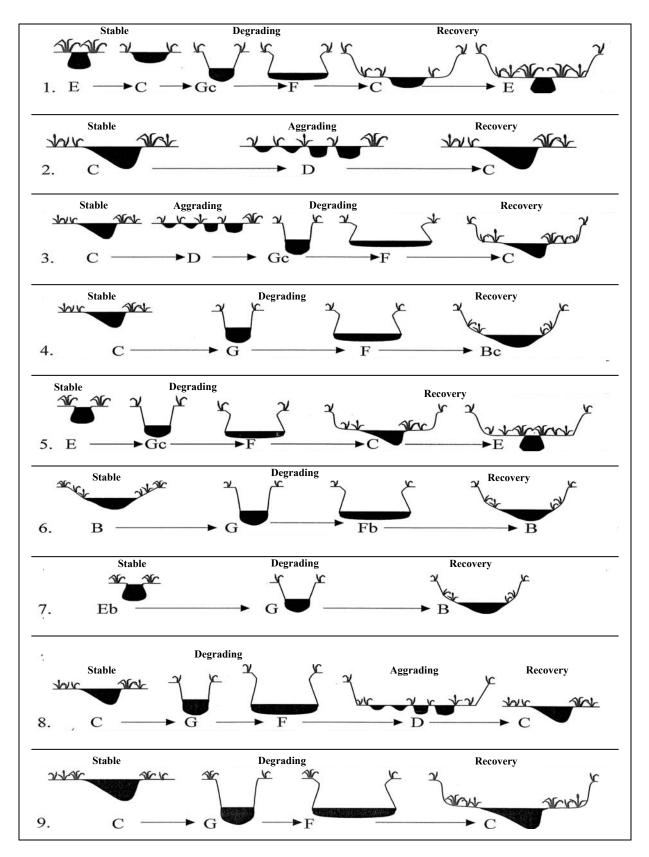


Figure 8. Various Stream Type Succession Scenarios (Rosgen 2001b)

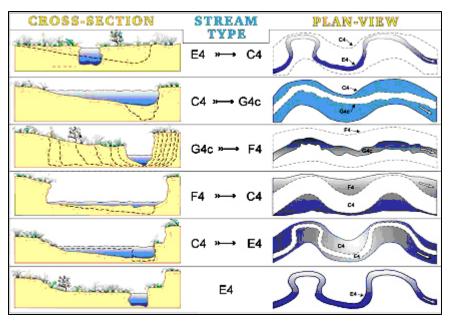


Figure 9. Examples of Stream Succession (Rosgen 1996).

Provide a narrative description of the potential cause of instability. Use the data from both the stream characterization and stability assessment forms when recording the description. The narrative should identify the potential cause of instability and clearly explain, based on fluvial geomorphic processes, how the cause has resulted in the stream instability.

The overall reach stability is determined based on the findings of the overall reach stability assessment parameters and the vertical and lateral stability assessment findings. The stream has localized instability conditions if any one of the following conditions exists:

- The overall lateral stability has a rating of localized instability;
- The evolution stability trend has a rating of recovering.

The stream has widespread instability if any one of the following conditions exists:

- The overall lateral stability has a rating of widespread instability;
- The overall vertical stability has a rating of aggrading or degrading; and
- The evolution stability trend has a rating of aggrading or degrading.

VI. DETAILED STREAM ASSESSMENT

The detailed stream assessment follows the assessment methodology developed by Rosgen (Rosgen 2006). It has main four components to characterize and assess streams: 1) bankfull determination, 2) stream characterization, 3) reference reach survey, and 4) stability condition assessment. This report will briefly describe the data collection and analyses for each of the components. Refer to *A Stream Channel Stability Assessment* *Methodology* (Rosgen 2001) for description of survey and assessment procedures. Data collection and analysis forms used for each component are in Appendix A. Additionally, a checklist of the procedures and products of the detailed assessment are in Appendix B.

A. Detailed Stream Assessment Methodology

<u>Bankfull Determination</u> – Section V.A.2. Bankfull Determination outlines the procedures to determine bankfull. However, if a U.S. Geologic Survey (USGS) gage station is near the Assessment Reach, survey the gage to further verify the bankfull determination as part of the detailed assessment. Complete the USGS gage station form in Appendix A. Refer to McCandless et al (2002) for detailed description of survey procedures.

<u>Stream Characterization</u> – The stream characterization data not only describes the existing morphological character of the Assessment Reach, it is required for the departure from potential analysis conducted as part of the stability condition assessment. Therefore, conduct a characterization survey of the assessment stream reach and classify the stream using the Rosgen Stream Classification System. The survey should include channel dimensions, planform dimensions, flood prone dimensions, longitudinal profile, and channel substrates. Enter this data into Stream Channel Classification and Reference Reach Summary Data forms in Appendix A.

<u>Reference Reach</u> – The reference reach data is used as a basis of comparison in relation to the Assessment Reach. Therefore, collect the same data for the reference reach survey as the data collected for the stream characterization and complete the same data forms.

<u>Stability Condition Assessment</u> – The stability condition assessment determines the extent and magnitude of instability through a departure from potential analysis. The departure from potential analysis uses data collected as part of the stream characterization and reference reach survey as well as field measurements of vertical and lateral stability indicators. The vertical and lateral field data collected includes:

- BEHI (lateral stability)
- NBS (lateral stability)
- Pfankuch (channel stability)
- Meander patterns
- Deposition patterns
- Debris/channel blockage
- Bank erosion summary
- Sediment supply

- Stream evolution
- Incision ratio (vertical stability)
- Stream channel scour/deposition potential
- Sediment Capacity Model (PowerSed)
- Bar sampling

B. Stream Stability Condition Rating

Complete the Stability Summary form and all of the supporting stability forms (located in Appendix A) to determine the stability condition and stability rating of the assessment

stream reach. The sediment supply (channel source) rating at the bottom of the Stability Summary form equates to stability condition. If the sediment supply rating is very high, then the stream stability condition is very high. Conversely, if the sediment supply rating is low, then the stream stability condition is stable.

Prepare a detailed narrative that describes the stability condition of the Assessment Reach. Base the narrative on the data collected and analyses conducted as part of the detailed stream assessment and describe the relationship of the fluvial geomorphic processes to the stability condition of the Assessment Reach. Use the departure from potential analysis to assist in relation description.

Glossary

- **Aggradation:** The vertical accumulation of sediment on the channel bed or lateral accumulation of sediment on the stream bank.
- **Bank Erosion Curve:** A graph that provides annual lateral erosion rates for combinations of near bank shear stresses and bank erodibility conditions.
- **Bank Erosion Hazard Index:** A measure of bank erodibility that uses bank height, bankfull height, root depth, root density, bank angle, surface protection, bank materials, and bank stratification.
- **Bank Height Ratio:** A measure of the vertical containment of the stream represented by the ratio of low bank height to maximum depth.
- **Bankfull:** The discharge(s) that is responsible for maintaining the stream channel dimension, pattern, and profile.
- **Belt Width (Meander Width):** The linear amplitude(s) between two sequential meanders, measured from outside of each meander.
- **Dominant Bank Erosion Hazard Index:** The bank erodibility condition that is most representative of the study reach.
- **Dominant Near Bank Shear Stress:** The near bank shear stress that is most representative of the conditions in a study reach.
- **Bar Deposition:** An accumulation of sediment on the stream channel bed that rises above baseflow.
- Deposition Pattern: A planform characterization of the deposition location and form.
- **Degradation:** The vertical loss of sediment on the channel bed or lateral loss of sediment on the stream bank.
- **Drainage Density:** A ratio of stream miles to drainage area that measures the concentration of the drainage network of a stream.
- **Entrenchment:** The horizontal containment of a stream that is measured by a ratio of floodprone width to bankfull width.
- **Ephemeral Stream:** A stream that flows only during and immediately after periods of rainfall or snow melt.
- **Facet Feature:** The bed forms of a stream typically consisting of riffles, runs, pools, and glides.

- **Floodplain:** The riparian area that is flooded when the stream exceeds its bankfull capacity, which is important in attenuating the erosive forces of stormflows.
- **Floodprone Width:** The lateral distance between the two points on either side of the stream that are at an elevation twice that of bankfull.
- **Glide:** The transition between the bottom of the pool to the top of the riffle that is represented by a rising channel bed.
- **Headcut:** Channel erosion represented by a retreat, vertical or nearly vertical of the channel bed.
- **Incision:** A measure of the vertical containment of the stream represented by the ratio of low bank height to maximum depth.
- **Inflection Point:** The slope break(s) along the stream bank where the orientation of the bank transitions from a vertical to horizontal angle.
- **Intermittent Stream:** A stream that flows a considerable portion of the time, but ceases to flow occasionally or seasonally when water demands exceed the available water supply.
- Land Use/Land Cover: A description of the land activities/natural resources within a delineated area.
- Lithology: A general description of the physical characteristics and properties of a rock.
- Meander: A bend in the stream that is responsible for dissipating stream energy.
- **Meander Length:** The linear distance between the meanders for an entire meander wavelength, measured from the apex of each meander.
- Meander Pattern: A planform characterization of the meander location and form.
- **Meander Wave:** A series of three meanders starting at the apex of a meander, continuing through another meander, and ending at the apex of the next meander.
- **Meander Wavelength:** The linear distance between the apexes of an entire meander wavelength.
- Meander Width Ratio: A ratio of meander width to bankfull width.
- **Near Bank Shear Stress:** The measured or estimated shear stress associated with the third of the channel closest to the study bank.

Perennial stream: A stream that contains water at all times except during extreme drought.

- **Pool:** The section of stream between the bottom of the run and the top of the glide that is responsible for dissipating stream energy.
- **Radius of Curvature:** The arc length to the outside of the meander, at the departure points of meander.
- **Riffle:** A facet feature that is steeper and shallower than a pool, and functions as a grade control feature.
- **Run:** The transition between the bottom of the riffle to the top of the pool that is represented by a descending channel bed.
- Scour: Channel degradation either along the bank or on the bed due to stormflows.
- Shear Stress: The measured or estimated erosional forces associated with stream flow, measured in pounds per square feet.
- **Sinuosity:** The measure of how much a stream meanders represented by a ratio of stream thalweg distance to straight valley distance.
- **Slope Break:** The vertical intersection of two different slope angles along the bank profile.
- **Soil Association:** A soil classification with distinct soil characteristics and properties that is identified by the United States Department of Agriculture Soil Conservation Service.
- **Stream Succession:** The evolutionary stage(s) of a stream as it attempts to reach a stable state described using the Rosgen stream classification types.
- Undercut: A concave shaped scour along the stream bank, resulting from bank erosion.

Literature Cited

- 1. Buffington, J.M. and D.R. Montgomery (1997). A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers, Water Resources Research, 33(8):1993-2029
- Cappuccitti, D. J. and W.E. Page (2000). Stream Response To Stormwater Management Best Management Practices In Maryland, Maryland Department of the Environment, Final Deliverable U. S. Environmental Protection Agency, Section 319(h), Clean Water Act, July, 2000
- 3. Gordon, N.D., T.A. McMahon, and B.L. Finlayson (1992). *Stream Hydrology: An Introduction for Ecologists*, john Wiley and Sons, New York.
- 4. Maryland Department of the Environment (2000) 2000 Maryland Stormwater Design Manual Volumes 1 & II, Prepared by the Center for Watershed Protection for the Maryland Department of the Environment Water Management Administration, Baltimore, MD.
- Malcolm, H.R. (1980). A Study of Detention in Urban Stormwater Management, Water Resources Research Institute of The University of North Carolina, Report No. 156, North Carolina State University, Raleigh, NC.
- 6. McCandless, T.L. 2003. *Maryland stream survey: Bankfull discharge and channel characteristics in the Coastal Plain hydrologic region*. U.S. Fish and Wildlife Service. Annapolis, MD. CBFO-S03-02.
- 7. McCandless, T.L. and R.A. Everett. 2002. *Maryland stream survey: Bankfull discharge and channel characteristics in the Piedmont hydrologic region*. U.S. Fish and Wildlife Service, Annapolis, MD. CBFO-S02-02.
- 8. Powell, P. O. 2007. Bankfull Channel Dimensions and Discharge for Urban Watersheds in the Coastal Plain Hydrologic Region, Maryland. Clear Creeks Consulting, Jarrettsville, Maryland.
- 9. Rosgen, D.R. 1996. Applied River Morphology. Wildland Hydrology. Pagosa Springs, CO.
- ----. 1999. Development of a river stability index for clean sediment TMDL's. In D.S. Olsen & J.P. Potyondy (EDS.), *Proceedings of the wetlands engineering and river restoration conference*, Reston, Virginia: American Society of Civil Engineers.
- ----. 2001a. A Practical Method of Computing Streambank Erosion Rates. *Proceedings of the Seventh Federal Interagency Sedimentation Conference*, Vol. 2, pp. II – 9-15, March 25 29, 2001, Reno, NV.
- ----. 2001b. A Stream Channel Stability Assessment Methodology. *Proceedings of the* Seventh Federal Interagency Sedimentation Conference, Vol. 2, pp. II – 9-15, March 18 - 26, 2001, Reno, NV.
- 13. ----. 2006. Watershed Assessment of River Stability and Sediment Supply (WARSSS). Wildland Hydrology. Pagosa Springs, CO.

- 14. Schuler, T. (1994). *The Importance of Imperviousness*. Watershed Protection Techniques 1(3): 100 -111.
- 15. Wolman, M.G. (1954), A method of sampling coarse river-bed material, *Transactions*, American Geophysical Union, 35(6):951-956.

APPENDIX A STANDARD ASSESSMENT FORMS

A-1 RAPID STREAM ASSESSMENT FORMS

RAPID STREAM CHARACTERIZATION Anne Arundel County, Maryland								
						<u>10f2</u>		
		W	ATERSHED CH	ARACTERIZATION				
" .		<i>"</i> <u> </u>						
		(from County, MBSS % Suburb:			:	% lmp.:		
Valley Type or De			/0//g/		·	/o mpn		
valley Type of De	scription.							
Adjacent LU/LC:								
Significant Upstrea	am Land	Cover and/or Land us	es that influence	e stream character a	and stability:			
U								
			ΒΔΝΚΕΙΙΙΙ					
Regional Curve:		Rural Coastal Plain			oastal Plain Curve			
BF Cross Sectiona	al Area			BF Depth				
BF Width				BF Discharge				
Channel: Sir	ngle Threa			TION AND CLASS Entrenchment	IFICATION			
BF Width	igie mie			Reach D50				
BF Depth				Riffle D84				
WS Slope BF Discharge	-			Sinuosity Width/Depth Ratio				
Dominant BF Feat				mail, Dopti Mailo				
Dominant Dr T da								
Rosgen Stream Ty								
Cross Section Ske	etch:							

Low Yes No Desc	LATERA Rating: Rating: Very Low Moderate	Crew: AL STABILITY Stable	:Page Unstable		_
Low Yes No Desc	LATERA Rating: Rating: Very Low Moderate cription:	Crew: L STABILITY Stable Low Moderate	:Page Unstable e High Very H	_2 of 2	_
Low Yes No Desc	LATERA Rating: Rating: Very Low Moderate cription:	L STABILITY Stable Low Moderate	Page Unstable e High Very H		
Low Yes No Desc	Rating: Rating: Very Low Moderate cription:	Stable Low Moderate	e High Very H	ligh Extreme	
Low Yes No Desc	Rating: Very Low Moderate cription:	Low Moderate	e High Very H	ligh Extreme	
Yes No Desc	Moderate cription:			ligh Extreme	
Yes No Desc	cription:	High	Extreme		
sion causes:	Yes No Description				
		:			
Stable		Unstable: Local	ized	Widespread	
	VERTICA	AL STABILITY			
	Rating: Not Incised	Slightly Mode	erately Highly	Extremely	
No Descriptior	ו:				
			ane		Cascade
			radiag		
Stable	0 0	00	0		
Very Low				Extreme	
Very Low	Low Modera	ate High	Very High	Extreme	
Very Low	Low Modera	ate High	Very High	Extreme	
	Degrading			0	
Stable		Unstable: Local	ized	Widespread	
	No Description No Description No Description fined Stable Very Low Very Low	VERTICA Rating: Not Incised No Description: No Description: No Description of Deposition Feature cool Riffle/Run fined Moderately Stable Degrading Very Low Low Moderate Very Low Low Moderate Very Low Low Moderate Stable Degrading Stable Degrading	VERTICAL STABILITY Rating: Not Incised Slightly Mode No Description: No Description: No Description of Deposition Feature: No Description of Deposition Feature: Dool Riffle/Run Run/Pool Plined Moderately Well Defined Stable Degrading Agg Very Low Low Moderate High Stable Degrading Aggrading	VERTICAL STABILITY	VERTICAL STABILITY Rating: Not Incised Slightly Moderately Highly Extremely No Description: No Description: No Description of Deposition Feature: No Description of Deposition Feature: Dol Riffle/Run Run/Pool Plane Stable Degrading OVERALL REACH STABILITY Very Low Low Moderate High Very High Extreme Stable Degrading

Stream:		
		Comments:
Reach:	BEHI Rating:	
Observer (s):	NBS Estimate Rating:	
Survey Date:		
	Bank Sketch and Near Bank Shear Stress cross section sketch	ection sketch
Erodibility Variable Index		
Bank Bankfull Height (ft) Height (ft) A/B A B		
Root Denth/Bank Heicht		
Root C/A C C/A		
Weighted Root Density		
Root Density D*(C/A)		
Bank Angle		
Bank Angle (degrees)		
Surface Protection		
Surface Protection (%)		
Materials: Upper-sandy loam. Lower-gravel with sand matrix		
Stratification: Boundary between sandy loam and gravel		
TOTAL SCORE:		

				Bank Er	Bank Erosion Hazard Index	ndex			
					Bank Erosion Potential	Potential			
				Very Low	Low	Moderate	High	Very High	Extreme
	Bank Height	∋ight∕	Value	1.0 - 1.1	1.11 - 1.19	1.2 - 1.59	1.6 - 2.09	2.1 - 2.8	>2.8
Ð	Bankfull Height	Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
abl	Root Depth/	∋pth/	Value	1.0 - 0.9	0.89 - 0.5	0.49 - 0.3	0.29 - 0.15	0.14 - 0.05	<0.05
้สเ	Bank Height	eight	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
V V	Weighted		Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 5.0	<5.0
(JIII	Root Density		Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
dit	oloal Jaca	0100	Value	0 - 20	21 - 60	61 - 80	81 - 90	91 - 119	>119
100	-	aißi	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
3	Surface		Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 10	<10
	Protection		Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
Bank Materials	terials								
Bedrock ((Bedrock ban	ks have	Bedrock (Bedrock banks have very low bank erosion potential)	k erosion po	tential)				
Boulders	Boulders (Banks composed of boulders h	osed of	boulders have	e low bank e	nave low bank erosion potential)	al)			
Cobble (S	Subtract 10 p	oints. If s	and/gravel m	atrix > 50%	Cobble (Subtract 10 points. If sand/gravel matrix > 50% of bank material, then do not adjust)	al, then do not	: adjust)		
Clay/Silt L	Clay/Silt Loam (Add 5 points)	points)							
Gravel (A	dd 5-10 poin	ts depen	ding on perce	entage of ba	Gravel (Add 5-10 points depending on percentage of bank material that is composed of sand)	t is composed	of sand)		
Sand (Ad Silt/Clay (Sand (Add 10 points if sand i Silt/Clay (+ 0: no adjustment)	sand is stment)	Sand (Add 10 points if sand is exposed to erosional processes) Silt/Clay (+ 0: no adjustment)	rosional proc	cesses)				
Stratification	ntion								
	Add 5-10 points depending on	<u>oints dep</u>		sition of uns	position of unstable layers in relation to bankfull stage	<u>relation to ban</u>	kfull stage		
Total Score	ore								
	Very Low 5-10	Low 10-20	<i>Moderate</i> 20-30	High 30-40	Very High 40-45	<i>Extreme</i> 45-50			

A-2 DETAILED STREAM ASSESSMENT FORMS

- USGS GAGE STATION FORM
- STREAM CHANNEL CLASSIFICATION AND REFERENCE FORMS
- STABILITY CONDITION ASSESSMENT FORMS

USGS GAGE STATION FORM

Worksheet 2-1. Sample form to record gage station and field data from *The Reference Reach Field Book* (Rosgen and Silvey, 2007).

S					ATION Data/Records for CLASSIFICATION	
Station NAME:					Station Number:	
LOCATION:						
Period of RECORD:			yrs		Mean Annual DISCHARGE:	cfs
Drainage AREA:		acres			mi ² Drainage Area Mn ELEV:	ft
Reference REACH SLOP	E:		ft/ft		Valley Type:	
Stream Type:]			HUC:	
		'BANKFU	LL" C	HA	RACTERISTICS	
Determined from	FIELD ME		ΝТ]	Determined from GAGE DAT	A Analysis
Bankfull WIDTH (W _{bkf})		ft		Bankfull WIDTH (W _{bkf})	ft
Bankfull Mean DEPTH	(d _{bkf})		ft		Bankfull MEAN DEPTH (d _{bkf})	ft
Bankfull Xsec AREA (/	A _{bkf})		ft ²		Bankfull Xsec AREA (A _{bkf})	ft ²
Wetted PERIMETER (W _p)		ft		Wetted PERIMETER (W _p)	ft
Bankfull STAGE (Gage	e Ht)		ft		Bankfull STAGE (Gage Ht)	ft
Est. Mean VELOCITY	(u)		ft/sec		Mean VELOCITY (u)	ft/sec
Est. Bkf. DISCHARGE	(Q _{bkf})		cfs		Bankfull DISCHARGE (Q _{bkf})	cfs
					tage-Discharge curvedata)	cfs
Recurrence Interval (Log-	Pearson)a	ssociated wit	"field-d	eter	mined" Bankfull Discharge	yrs
From the A	nnual Pea	k Flow Frequ	ency Ar	naly	sis data for the Gage Station, determin	ie:
1.5 Year R.I. Discharge	=		cfs		10 Year R.I. Discharge =	cfs
2.0 Year R.I. Discharge	=		cfs		25 Year R.I. Discharge=	cfs
5.0 Year R.I. Discharge	=		cfs		50 Year R.I. Discharge =	cfs
		MEAN	NDER	Ģ	EOMETRY	
Meander Length (L_m))		ft		Radius of Curvature (R _C)	ft
Belt Width (W_{blt})			ft		Meander Width Ratio (Wolf/Wokf)	ft/ft
		HYDR		;	GEOMETRY	
parameters of Width (W), Area	a (A), Mean D	epth (d) & Mea	n Velocity	/ (u) e se	gression analyses of measured discharge Q) w determine the <i>intercept coefficient</i> (a) and the ected hydraulic parameters and X is a given dis Area (A) Velocity (u)	slope exponent (b)
Intercept Coefficient:	(a)			~ /		
Slope Exponent:	(a)					
Hydraulic Radius: R =			ft		Manning's "n" at Bankfull Stage	Coeff.
	" h " = 1	1.4865 [(A rea	a) (Hyd	raul	cRadius ^{2/3}) (Slope ^{1/2})] / Q _{bkf}	

14. Plot Manning's "n" by friction factor (Figure 2-19) (Example in Figure 4-11). 15. Plot Manning's "n" by stream type (Figure 2-20) (Example in Figure 4-12). 15. Plot Manning's "n" by stream type (Figure 2-20) (Example in Figure 4-12). Gage Station #: Gage Station Manning's "n" by stream type (Figure 2-20) (Example in Figure 4-12). Gage Station Manning's "n" by stream type (Figure 2-20) (Example in Figure 4-12). Gage Station Manning's "n" by stream type (Figure 2-20) (Example in Figure 4-12). Gage Station Manning's "n" by stream type (Figure 2-20) (Example in Figure 4-12). Image Bankfull Bankfull Bankfull Mean Ave. Area Velocity Surface Nokt (cfs) Wokt (ft) Ave. (mi ²) Q _{bkt} (cfs) Wokt (ft) Ab _{kt} (ft/s) Mean Ave. D ₈₄ Fill Mouth D _{bkt} (ft) Ab _{kt} (ft/s) S (ft/ft) Manning's

Worksheet 4-7. Procedure to validate hydraulic relations.

Copyright © 2008 Wildland Hydrology

River Stability Field Guide page 4-29

STREAM CHANNEL CLASSIFICATION AND REFERENCE FORMS

Worksheet 2-3. Field form for Level II stream classification (Rosgen, 1996; Rosgen , 2006b).

Basin:	Drainage Area:	acres	mi ²
Location:			
Twp.&Rge:	Sec.&	Qtr.:	
Cross-Section Mon	uments (Lat./Long.):	D)ate:
Observers:		Valley T	уре:
	II WIDTH (W _{bkf}) f the stream channel at bankfull stage elevation, in a riffle s	section.	ft
Mean DE	II DEPTH (d_{bkf}) PTH of the stream channel cross-section, at bankfull stage on ($d_{bkf} = A / W_{bkf}$).	elevation, in a	ft
	II X-Section AREA (A _{kf}) the stream channel cross-section, at bankfull stage elevation	on, in a riffle	ft ²
	Depth Ratio (W_{bkf} / d_{bkf}) VIDTH divided by bankfull mean DEPTH, in a riffle section.		ft/ft
Maximum	um DEPTH (d _{mbkf}) depth of the bankfull channel cross-section, or distance be Thalweg elevations, in a riffle section.	etween the bankful	ft
Twice ma	of Flood-Prone Area (W _{fpa}) ximum DEPTH, or (2 x d _{nbkl}) = the stage/elevation at which determined in a riffle section.	flood-prone area	ft
	chment Ratio (ER) of flood-prone area WIDTH divided by bankfull channel WI tion).	DTH (W _{pa} /W _{bkf})	ft/ft
The D ₅₀ p	el Materials (Particle Size Index) D ₀ article size index representsthe mean diameter of channel from the channel surface, between the bankfull stage and T		mm
Channel	Surface SLOPE (S) slope = "rise over run" for a reach approximately 20–30 bar length, with the "riffle-to-riffle" water surface slope represer Il stage.		ft/ft
Sinuosity divided by	el SINUOSITY (k) is an index of channel pattern, determined from a ratio of s y valley length (SL / VL); or estimated from a ratio of valley lope (VS / S).		
Stream Type	m See	e Classification Key (Figure 2-21)	

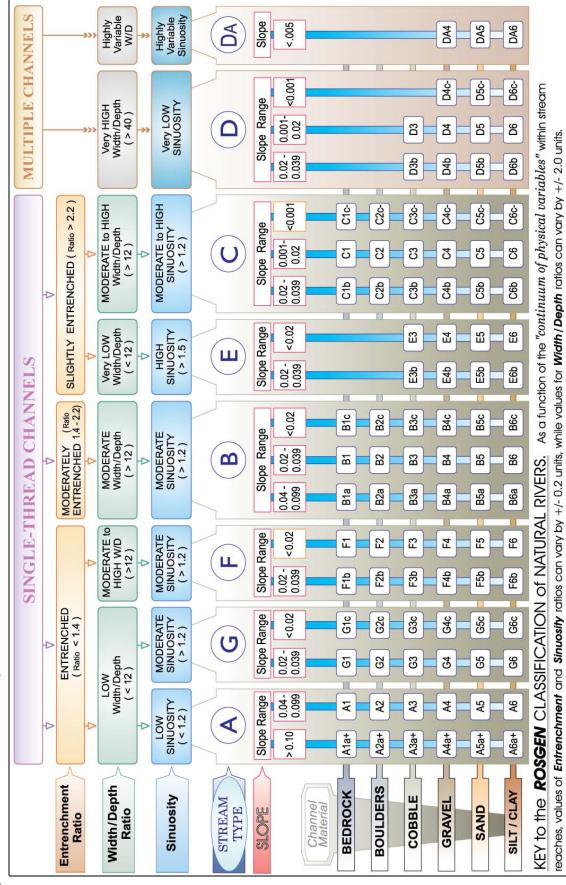


Figure 2-21. Stream classification key for natural rivers.

Worksheet 2-4. Morphological relations, including dimensionless ratios of river reach sites (Rosgen, 2006b; Rosgen and Silvey 2007).

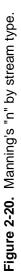
Str	eam:					Lo	ocation:								
Ob	servers:			Date:				Valle	у Туре			Stream	n Type:		
				Riv	ver Rea	ich Sum	mary I	Data							
\square	Mean Riffle Depth (d _{bkf})		ft	Riffle \	Vidth (V	V _{bkf})			ft	Riffle Ar	ea (A _b	_{kf})			ft ²
_	Mean Pool Depth (d _{okfp})		ft	Pool V	Vidth (W	/ _{bkfp})			ft	Pool Are	ea (A _{bk}	_{fp})			ft ²
Dimension	Mean Pool Depth/Mean Riffle Depth		d _{bkfp} / d _{bkf}	Pool V	vidth/Rif	fle Width			W _{bkfp} / W _{bkf}	Pool Are	ea / Ri	ffle Area			A _{bkfp} /A
Dim	Max Riffle Depth (d _{maxrif})		ft	Max P	ool Dep	th (d _{maxp})			ft	Max Riff	ile Dep	oth/Mean Rif	fle Dep	th	
Channel	Max Pool Depth/Mean Riffle D	epth		Point E	3ar Slop	e			ft/ft	Inner Be	erm W	idth (W _{ib})			ft
Chai	Inner Berm Depth (d _{ib})		ft	Inner E	Berm W	idth/Dept	h Ratio			W_{ib}/d_{ib}	Inne	r Berm Area	(A _{ib})		ft ²
	Streamflow: Estimated Mean	/elocity	at Ban	kfull Sta	age (ų _{kf})				ft/s	Estimati	on Me	thod			
	Streamflow: Estimated Discha	rge at E	Bankfull	Stage ((Q _{okf})				cfs	Drainag	e Area	i i			mi²
	Geometry	Mean	Min	Max			Dime	ension	ess Ge	ometry I	Ratios	5	Mean	Min	Max
\square	Meander Wavelength (L _m)				ft	Meande									
Pattern	Radius of Curvature (R _c)				ft	Radius o	of Curva	iture/Ri	ffle Wid	th (R _c /W∣	_{bkf})	ĺ			
	Belt Width (W _{blt})				ft	Meande	r Width	Ratio (W _{blt} /W _{bl}	_{cf})					
Channel	Individual Pool Length				ft	Pool Ler	ngth/Riff	ile Widt	h						ŀ
Cha	Pool to Pool Spacing				ft	Pool to I	Pool Spa	acing/R	iffle Wi	dth					
	Riffle Length				ft	Riffle Le	ngth/Rif	fle Wid	th						
\square	Valley Slope (VS)		ft/ft	Avera	ne Wate	r Surface	Slope	(5)		4	ˈt/ft	Sinuosity (\	/९/९)		ł
	Stream Length (SL)		ft	1	Length		5 Slope	(0)	<u> </u>		t t	Sinuosity (S			<u> </u>
	Low Bank Height start	1	ft	-	Max Rif	. ,	start		ft	1	-	ht Ratio (BF	,	start	<u> </u>
	(LBH) end		ft		Depth		end		ft			x Riffle Dept	,	end	
	Facet Slopes	Mean	Min	Max	!				-	be Ratios			Mean	Min	Max
Profile	Riffle Slope (S _{rif})	 	<u> </u>	<u> </u>	ft/ft					Irface Slo					<u> </u>
	Run Slope (S _{run})		<u> </u>	<u> </u>	ft/ft					face Slop					<u> </u>
Channel	Pool Slope (S _p)	1	<u> </u>	<u> </u>	ft/ft			<u> </u>		rface Slo	· (P				 T
S	Glide Slope (Sg)		<u> </u>	<u> </u>	ft/ft	Glide Sl		-		urface Slo		/ S)			
	Feature Midpoint ^a Max Riffle Depth (d _{maxrif})	Mean	Min	Max	ft	Max Riff			-	th Ratios Depth (d _m		.)	Mean	Min	Max
	Max Run Depth (d _{maxrun})		i	i	π ft					epth (d _{max}		· · · ·			<u> </u>
	Max Pool Depth (d _{maxp})				ft					epth (d _{max}					
	Max Glide Depth (d _{maxp})	 	<u> </u> 	<u> </u> 	<u>i</u>					Depth (dma					<u> </u>
		!	1	i	<u> </u>		Lo Dopti	.,		(4m;	axy, ob	N/			<u> </u>
\square		ach ^b	Rif	fle ^c	E	Bar		Rea	ach ^b	Riffl	e ^c	Bar	Protru	ision H	1
sle	% Silt/Clay						D ₁₆								mm
Channel Materials	% Sand		<u> </u>		1		D ₃₅					· · ·			mm
I Ma	% Gravel		<u> </u>				D ₅₀								mm
nne	% Cobble		<u> </u>		1		D ₈₄								mm
Cha	% Boulder						D ₉₅								mm
	% Bedrock						D ₁₀₀								mm

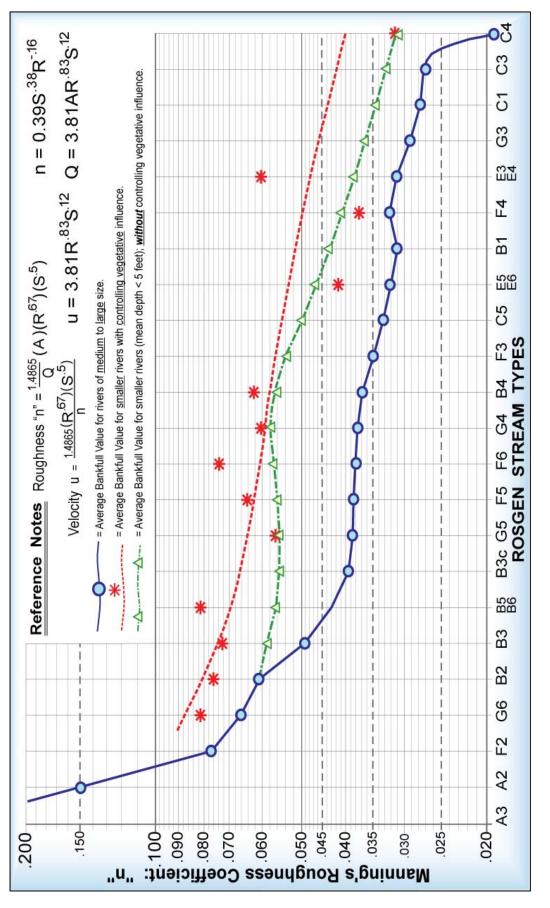
^a Min, max, mean depths are ave. mid-point values except pools: taken at deepest part of pool. ^b Composite sample of riffles and pools within the designated reach. ^c Active bed of a riffle. ^d Height of roughness feature above bed.

Copyright © 2008 Wildland Hydrology

STABILITY CONDITION ASSESSMENT FORMS

Stream:			Foc	Location:		
Observers:		Date:		Stream Type:	Valle	Valley Type:
Channel Dimension	Mean bankfull depth (ft):	Mean bankfull width (ft):	Cross-section area (ft²):	Width of flood- prone area (ft):	+ ÷	Entrenchment ratio:
Channel Pattern	Mean: MWR: Range:	Lm/W _{bkf} :	بن	Rc/W _{bkf} :		Sinuosity:
	Check: 🔽 Riffle/pool	C Step/pool	Plane bed Cor	Convergence/divergence		Dunes/antidunes/smooth bed
River Profile and Bed	Max Riffle	Pool Denth ratio	Riffle	Pool Pool to R	Ratio	Slope
Features	bankfull	(max/mean)	aulu Pan):	lood	Vallev:	Average
	depth (ft):			spacing:	vancy.	bankfull:
	Riparian Curre	Current composition/density:	Potential composition/density:	density: Remarks:		Condition, vigor and/or usage of existing reach:
	vegetation					
	Flow Strea	Stream size	Meander	Depositional		Debris/channel
	regime: and order:	order:	pattern(s):	pattern(s):		blockage(s):
Level III Stream	Degree of incision	Degree of incision	incision	Modified Pfa	Modified Pfankuch stability rating	ating
Stability Indices	(Bank-Height Ratio):	stability rating:		(numeric anc	(numeric and adjective rating):	j):
	Width/depth	Reference W/d	Width/depth ratio state	tio state	W/d ra	W/d ratio state
	ratio (W/d):	ratio (W/d _{ref}):	(W/d) / (W/d _{ref}):		stability	stability rating:
	Meander Width Ratio (MWR)	Reference MWR	Degree of confinement (MWR / MWR):	inement	MWR /	MWR / MWR _{ref} stability ration:
Bank Frosion	I andth of reach		Annual straambank arasion rato:	Curve used	Pamarke.	
Summarv	studied (ft):		(tons/vr) (tons/vr)			
Sedimont Conceitur				Domarke	rke.	
Sediment Capacity (POWERSED)	Sufficient capacity	/ 🔲 Insufficient capacity	acity 🔲 Excess capacity		.62	
Entrainment/ Competence	Largest particle from bar sample (mm)·	t =	Exis لا =	Existing Required	-	Existing Required
				ľ		
Successional Stage Shift	↓ ↑	↑	 ↑	 Existing stream state (type): 	tream e):	Potential stream state (type):
Lateral Stability	C Stable	🕇 Mod. unstable 🛛	T Unstable	Highly unstable	Remarks/causes:	S:
Vertical Stability (Aggradation)	No deposition	Mod. deposition	Ex. deposition	Aggradation	Remarks/causes:	ö
Vertical Stability (Degradation)	Not incised	Slightly incised	🗖 Mod. incised 🗖	Degradation	Remarks/causes:	č.
Channel Enlargement	🗖 No increase	Slight increase	Mod. increase	Extensive	Remarks/causes:	ö
Sediment Supply (Channel Source)	Low	Moderate	High 🔲 Very high	Remarks/causes:		


Worksheet 3-22. Summary of stability condition categories.


River Stability Field Guide page 3-128

Copyright © 2008 Wildland Hydrology

Worksheet 2-2. Computations of velocity and bankfull discharge using various methods (Rosgen, 2006b; Rosgen and Silvey, 2007).

	Bar	kfull VE		/ DISCHA	RG	E Esti	mat	es		
Site				Location						
Date	Stre	am Type		Valley T	ype					
Observers	•			HUC						
	INPUT VARIAE	LES			C	UTPU	IT \		BLES	
Bankfull Cro	ss-sectional AREA		A _{bkf} (ft ²)	Bankfu	ull N	lean DI	EPT	H		D _{bkf} (ft)
Bank	full WIDTH		W _{bkf} (ft)			ERIME _{kf} + W _{bkf}	TER	2		W _p (ft)
D ₈₄	, @ Riffle		Dia. (mm)	D ₈₄	mm	/ 304.8	3 =			D 84 (ft)
Bank	full SLOPE		S _{bkf} (ft / ft)	Hydr	auli A _{bkf} /	c RADI ' W p	US			R (ft)
Gravitatio	nal Acceleration	32.2	g (ft / sec ²)			Roughi / D ₈₄ (ft)	ness	;		
Drair	age AREA		DA (mi ²)			Veloci √gRS	ty			u* (ft / sec)
	ESTIMATION	METHO	DS		Ва	nkfull V	ELO			hkfull HARGE
1. Friction Factor	Relative u = [2.83 Roughness	3 + 5.66Log	g{ R / D ₈₄]	}]u*			ft	sec		cfs
	Coefficient: a) Mannii 5. 2-18, 19) u = 1.4865*R	^{2/3} *S ^{1/2} /n	n	=			ft /	sec		cfs
	Coefficient: n' from Jarrett (USGS): tion is for applications involving	n = 0.39S ^{.38} R		=			ft /	sec		cfs
	ole- and boulder-dominated		-	-						
2. Roughness			<u>= 1.4865*</u> F	R ^{2/3} *S ^{1/2} /n			ft /	sec		cfs
3. Other Metho	ds (Hey, Darcy-Weisbach	<mark>i, Chezy C, et</mark>	c.)				ft /	sec		cfs
3. Other Metho	ds (Hey, Darcy-Weisbach	<mark>ı, Chezy C, et</mark>	c.)				ft /	sec		cfs
4. Continuity Return	Equations: a) Re Period for Bankfull Discl	gional Curvo narge	esu= Q=	Q/A Yr.			ft /	sec		cfs
4. Continuity	Equations: b) US	GS Gage Da	ita u =	Q / A			ft /	sec		cfs
	s for using the D ₈₄ term									
	sand-bed channels: Mo stitute an average sand	-								vations.
Option 2. For	boulder-dominated cha	annels: Meas	sure several	"protrusion	heig	hts" (h _{bo})) of b	oulders a	above char	nnel bed
	ations. Substitute an av									
	bedrock-dominated ch ted surfaces above cha									
	erm in estimation method				Gray		in hic		iciâur ^p fi n t t	

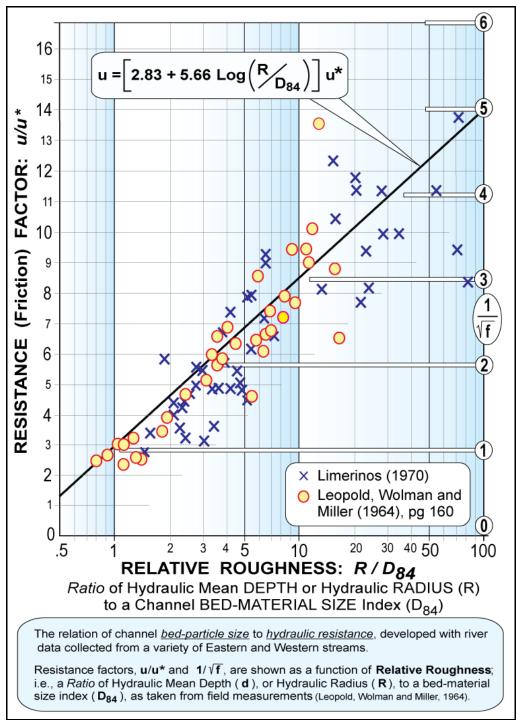
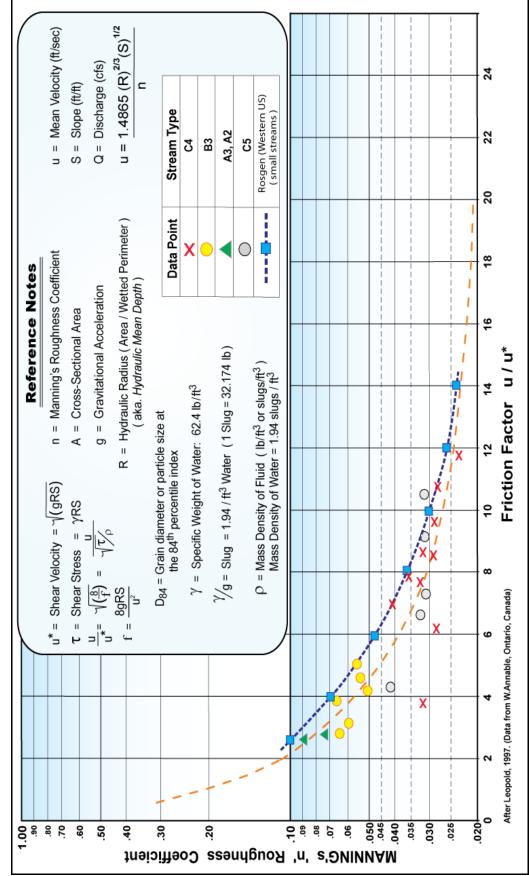
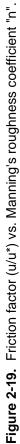
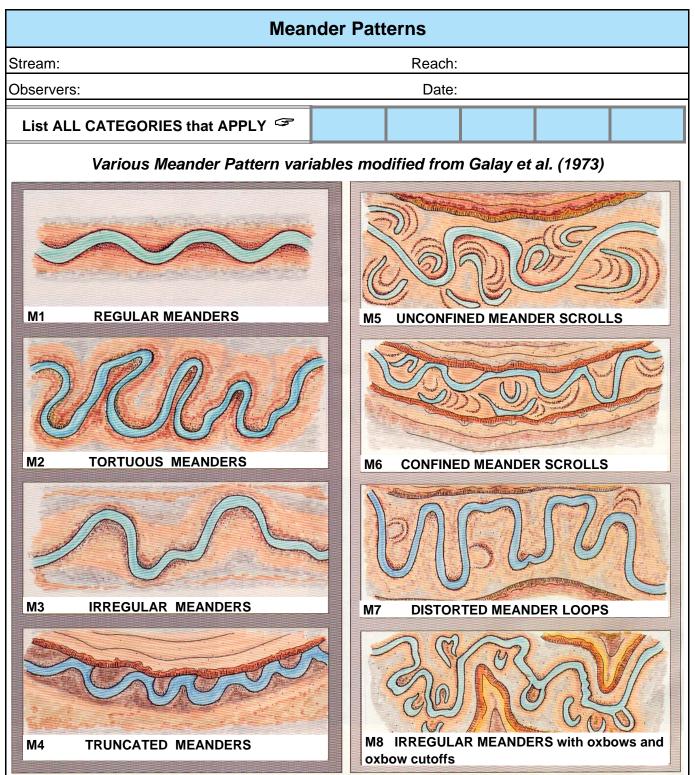




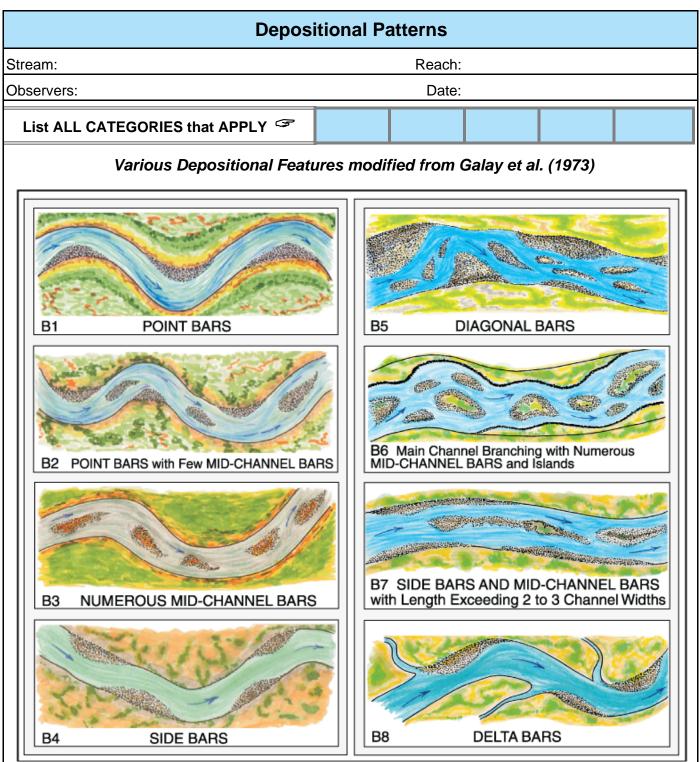
Figure 2-18. Relative roughness (R/D₈₄) vs. friction factor (u//u*).

Worksheet 3-1. Riparian vegetation composition/density used for channel stability assessment.

			Riparian Ve	getation	
Stre	eam:			Location:	
Obs	servers:		Reference reach	Disturbed (impacted reach) Date:	
spe	sting cies nposition:			Potential species composition:	
R	iparian cover categories	Percent aerial cover*	Percent of site coverage**	Species composition	Percent of total species composition
1. Overstory	Canopy layer				
					100%
2. Understory	Shrub layer				
					100%
evel	Herbaceous				
3. Ground leve	Leaf or needle litter			Remarks: Condition, vigor and/or usage of existing reach:	100%
	Bare ground				
	ed on crown closure. ed on basal area to s	surface area.	Column total = 100%		

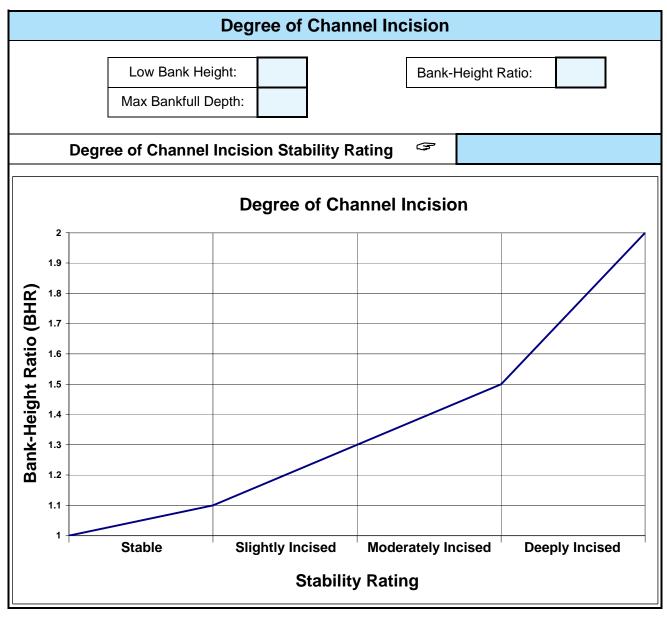

Worksheet 3-2. Flow regime variables that influence channel characteristics, sediment regime and biological interpretations.

	FLOW REGIME
Stream:	Location:
Observers:	Date:
	COMBINATIONS that
General C	category
E	Ephemeral stream channels: Flows only in response to precipitation
S	Subterranean stream channel: Flows parallel to and near the surface for various seasons - a sub- surface flow that follows the stream bed.
I	Intermittent stream channel: Surface water flows discontinuously along its length. Often associated with sporadic and/or seasonal flows and also with Karst (limestone) geology where losing/gaining reaches create flows that disappear then reappear farther downstream.
Р	Perennial stream channels: Surface water persists yearlong.
Specific C	Category
1	Seasonal variation in streamflow dominated primarily by snowmelt runoff.
2	Seasonal variation in streamflow dominated primarily by stormflow runoff.
3	Uniform stage and associated streamflow due to spring-fed condition, backwater, etc.
4	Streamflow regulated by glacial melt.
5	Ice flows/ice torrents from ice dam breaches.
6	Alternating flow/backwater due to tidal influence.
7	Regulated streamflow due to diversions, dam release, dewatering, etc.
8	Altered due to development, such as urban streams, cut-over watersheds or vegetation conversions (forested to grassland) that change flow response to precipitation events.
9	Rain-on-snow generated runoff.


Worksheet 3-3. Stream order and stream size categories for stratification by stream type.

		e and Orde	
Stream:			
Location:			
Observers:			
Date:			
Stream Size	e Category and	d Order 🖙	
Category		ZE: Bankfull dth	Check (✓) appropriate
	meters	feet	category
S-1	0.305	<1	
S-2	0.3 – 1.5	1 – 5	
S-3	1.5 – 4.6	5 – 15	
S-4	4.6 – 9	15 – 30	
S-5	9 – 15	30 – 50	
S-6	15 – 22.8	50 – 75	
S-7	22.8 - 30.5	75 – 100	
S-8	30.5 – 46	100 – 150	
S-9	46 – 76	150 – 250	
S-10	76 – 107	250 - 350	
S-11	107 – 150	350 - 500	
S-12	150 – 305	500 - 1000	
S-13	>305	>1000	
	Stream	n Order	
reach. For ex	cample a third or	for specific stream der stream with a be indexed as: S-4	bankfull width

Worksheet 3-5. Depositional patterns used for stabiilty assessment interpretations.

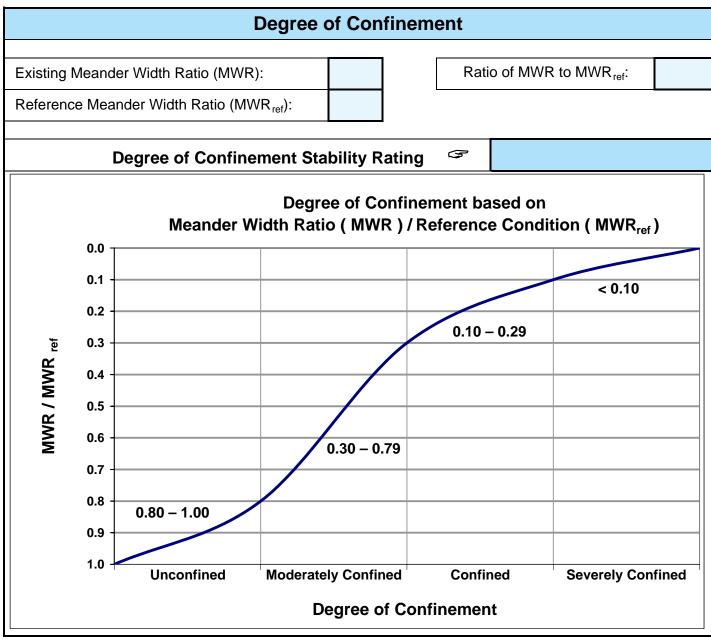


River Stability Field Guide page 3-20

Worksheet 3-6. Various categories of in-channel debris, dams and channel blockages used to evaluate channel stability.

		Channel Blockages	
Stream	n:	Location:	
Obser	vers:	Date:	
Desc	ription/extent	Materials that upon placement into the active channel or flood- prone area may cause adjustments in channel dimensions or conditions due to influences on the existing flow regime.	Check (✔) all that apply
D1	None	Minor amounts of small, floatable material.	
D2	Infrequent	Debris consists of small, easily moved, floatable material, e.g., leaves, needles, small limbs and twigs.	
D3	Moderate	Increasing frequency of small- to medium-sized material, such as large limbs, branches and small logs, that when accumulated, affect 10% or less of the active channel cross-section area.	
D4	Numerous	Significant build-up of medium- to large-sized materials, e.g., large limbs, branches, small logs or portions of trees that may occupy 10–30% of the active channel cross-section area.	
D5	Extensive	Debris "dams" of predominantly larger materials, e.g., branches, logs and trees, occupying 30–50% of the active channel cross-section area, often extending across the width of the active channel.	
D6	Dominating	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section area. Such accumulations may divert water into the flood-prone areas and form fish migration barriers, even when flows are at less than bankfull.	
D7	Beaver dams: Few	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.	
D8	Beaver dams: Frequent	Frequency of dams is such that backwater conditions exist for channel reaches between structures where streamflow velocities are reduced and channel dimensions or conditions are influenced.	
D9	Beaver dams: Abandoned	Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments, such as bank erosion, lateral migration, avulsion, aggradation and degradation.	
D10	Human influences	Structures, facilities or materials related to land uses or development located within the flood-prone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures and various transportation encroachments that have an influence on the existing flow regime, such that significant channel adjustments occur.	

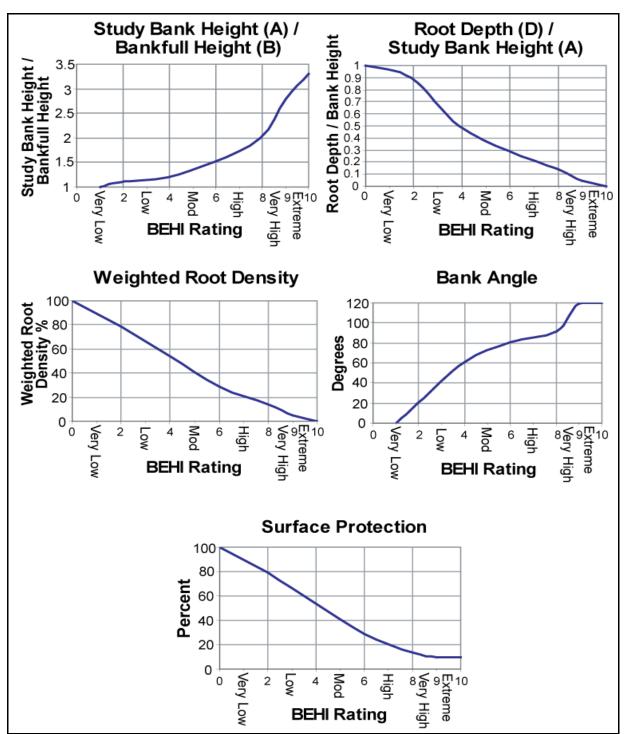
River Stability Field Guide page 3-26



Worksheet 3-7. Relationship of Bank-Height Ratio (BHR) ranges to corresponding stream stability ratings.

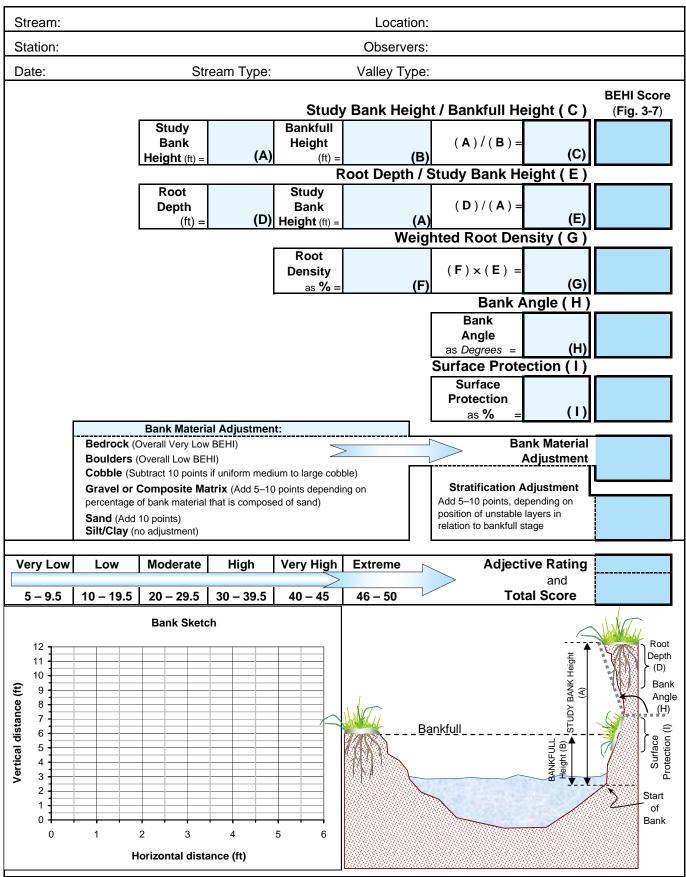
Worksheet 3-8. Stability ratings based on departure of width/depth ratio from reference condition.

Worksheet 3-9. Degree of confinement based on Meander Width Ratio (MWR) divided by reference condition Meander Width Ratio (MWR_{ref}).



Copyright © 2008 Wildland Hydrology

River Stability Field Guide page 3-38


Worksheet 3-10. Pfankuch (1975) channel stability rating procedure, as modified by Rosgen (1996, 2001c, 2006b).

												:									
Stream:					:	Location	Ë			(Valley Type	e:		Obs	Observers:				Date:	
Loca-	Kev	Catedory			Excellent	ent	-			Good	5	-			Ľ	Fair				Poor	
tion		(Description		Rating	D	D	Description		Rating	bu		Descriptior	uc	Ä	Rating	Description	ption	Rating
S	-	Landform slope	Bank	Bank slope gradient <30%	dient <30%	6.	5	Bank (slope grad	Bank slope gradient 30–40%	. %С	4		Bank slope gradient 40–60%	adient 40	-60%.		В Ю	Bank slope gradient > 60%	60%.	8
panka	7	Mass erosion		No evidence of past or future mass erosion.	past or fut	ture mass	ю	Infrequ	Infrequent. Most future potential.	Infrequent. Mostly healed over. Low future potential.	over. Lov	ہ د		Frequent or larg nearly yearlong.	'ge, caus J.	Frequent or large, causing sediment nearly yearlong.	ant	<u>ت بر</u> م	Frequent or large, causing sediment nearly yearlong OR imminent danger of same.	sing sediment nearly danger of same.	12
bbeı	ę	Debris jam potential	Essel chanr	Essentially absent from immediate channel area.	ent from in	nmediate	7	Preser limbs.	nt, but mo:	Present, but mostly small twigs and limbs.	twigs and	4		Moderate to he larger sizes.	eavy amo	Moderate to heavy amounts, mostly larger sizes.	۲	<u>a</u> ∠	Moderate to heavy amounts, predominantly larger sizes.	ounts, predominantly	8
IN	4	Vegetative bank protection		% plant der est a deep	nsity. Vigc , dense sc	 > 90% plant density. Vigor and variety suggest a deep, dense soil-binding root mass. 	y oot 3	70–90° vigor s mass.	% density uggest let	70–90% density. Fewer species or less vigor suggest less dense or deep root mass.	oecies or or deep r	less oot 6		0% densi es from a nass.	ty. Lowei shallow,	50–70% density. Lower vigor and fewe species from a shallow, discontinuous root mass.	fewer Ious	o sr <u>≤</u> , ∧	<50% density plus fewer species and less vigor indicating poor, discontinuous and shallow root mass.	er species and less iscontinuous and	12
	2 2	Channel capacity	Bank h stage. ¹ width/d	neights sufficik Width/depth r tepth ratio = 1	ent to contain ratio departur I.0. Bank-Hei	Bank heights sufficient to contain the bankfull stage. Widhh/depth ratio departure from reference widh/depth ratio = 1.0. Bank-Height Ratio (BHR) , 1.0.) =	Bankfull Width/de width/de (BHR) =	stage is cont epth ratio dep epth ratio = 1.(1.0-1.1.	Bankfull stage is contained within banks. Width/depth ratio departure from reference width/depth ratio = 1.0–1.2. Bank-Height Ratio (BHR) = 1.0–1.1.	banks. eference Height Rati	0		lll stage is n ure from ref∉ 4. Bank-Heiç	ot contained srence widtl tht Ratio (B	Banktull stage is not contained. Width/depth ratio departure from reference width/depth ratio = 1.2–1.4. Bank-Height Ratio (BHR) = 1.1–1.3.	- ratio	3 Geo E E	Bankfull stage is not contained; over-bank flows are common with lows less than bankfull. Widhthdeph ratio departure from reference width/deph ratio > 1.4. Bank- Height Ratio (BHR) > 1.3.	d; over-bank flows are bankfull. Width/depth ratio h/depth ratio > 1.4. Bank-	4
รุงเ	9	Bank rock content	> 65% 12"+ u	 > 65% with large angular boulders. 12"+ common. 	le angular	boulders.	2	40–65 cobble	40-65%. Mostly cobbles 6-12".	40–65%. Mostly boulders and small cobbles 6–12".	and sma	4		0%. Most	in the 3-	20–40%. Most in the 3–6" diameter class.	er.	5 لار ص	<20% rock fragments of gravel sizes, 1–3" or less.	of gravel sizes, 1–3"	8
ıer baı	7	Obstructions to flow		s and logs rn w/o cutt	ifirmly imb ing or dep	Rocks and logs firmly imbedded. Flow pattern w/o cutting or deposition. Stable bed.	v ble	Some f current: fewer a	Some present caus currents and minor fewer and less firm	Some present causing erosive cross currents and minor pool filling. Obstructions fewer and less firm.	e cross . Obstructi	ions 4		Moderately frequ move with high fl and pool filling.	lent, unsta lows causi	Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool filling.	ions ting	تة ص	Frequent obstructions and deflectors cause bank erosion yearlong. Sediment traps full, channel migration occurring.	and deflectors cause Sediment traps full, irring.	8
мод	8	Cutting	Little - <6".	Little or none. Infrequent raw banks <6".	nfrequent	raw banks	4	Some, constri 12".	intermitte ictions. Ra	intermittently at outcurves and ictions. Raw banks may be up to	tcurves a may be u	nd Ip to 6		ficant. Cu langs anc	ts 12–24 I sloughir	Significant. Cuts 12–24" high. Root mat overhangs and sloughing evident.		12 Al	Almost continuous cuts, some over high. Failure of overhangs frequent.	,, some over 24" ngs frequent.	16
	6	Deposition	Little or no point bars	or no enla bars.	irgement c	Little or no enlargement of channel or point bars.	4	Some coarse	Some new bar in coarse gravel.	new bar increase, mostly from s gravel.	nostly fro	8		erate deprise sand or	ostion of า old and	Moderate depostion of new gravel and coarse sand on old and some new bars.	and	12 12 pi	Extensive deposit of predominantly fine particles. Accelerated bar development.	edominantly fine bar development.	16
	10	Rock angularity	Sharp surfac	Sharp edges and corners. Plane surfaces rough.	nd corners	. Plane	+	Rounc smootl	Rounded corners smooth and flat.	Rounded corners and edges. Surfaces smooth and flat.	les. Surfa	aces 2		Corners and e dimensions.	dges wel	Corners and edges well rounded in 2 dimensions.	n 2	3 Sr	Well rounded in all dimensions, surfaces smooth.	ensions, surfaces	4
	11	Brightness	Surfa Gene	Surfaces dull, dark or stained. Generally not bright.	lark or stai right.	ned.	-	Mostly du surfaces.	r dull, but r es.	Mostly dull, but may have <35% bright surfaces.	<35% br	ight 2		Mixture dull an mixture range.	d bright,	Mixture dull and bright, i.e., 35–65% mixture range.	%	3 3 8(Predominantly bright, > 65%, exposed or scoured surfaces.	• 65%, exposed or	4
w	12	Consolidation of particles		Assorted sizes tightly packed or overlapping.	tightly pac	ked or	2	Moderately overlapping	ately pack pping.	Moderately packed with some overlapping.	ome	4		Mostly loose asso apparent overlap.	ssortmer ap.	Mostly loose assortment with no apparent overlap.		e N	No packing evident. Loose assortment, easily moved.	ose assortment,	8
otto8	13	Bottom size distribution	No si: mater	No size change evident. Stable material 80–100%.	evident. 5 3%.	Stable	4	Distributi 50–80%.	ution shift %.	Distribution shift light. Stable material 50–80%.	ole mater	ial 8		Moderate change i materials 20–50%.	nge in siz 0%.	Moderate change in sizes. Stable materials 20–50%.	-	12 M m	Marked distribution change. Stable materials 0–20%.	ange. Stable	16
3	14	Scouring and deposition		<5% of bottom affected by scour or deposition.	affected b	y scour or	9	5–30% and wl deposi	5–30% affected. So and where grades deposition in pools	5–30% affected. Scour at constrictions and where grades steepen. Some deposition in pools.	constricti 1. Some	ions 12		30–50% affected. Deposits a at obstructions, constrictions bends. Some filling of pools.	ed. Depc , constric illing of p	30–50% affected. Deposits and scour at obstructions, constrictions and bends. Some filling of pools.		18 fl	More than 50% of the bottom in a state of flux or change nearly yearlong.	oottom in a state of earlong.	24
	15	Aquatic vegetation	Abun	Abundant growth moss-like, perennial. In swift water too.	th moss-lił /ift water to	Abundant growth moss-like, dark green perennial. In swift water too.	en 1	Comm and pc	ion. Algae vol areas. ⊧	Common. Algae forms in low velocity and pool areas. Moss here too.	ow veloc ∋ too.	ity 2		Present but spotty, mostly in backwater. Seasonal algae g makes rocks slick.	otty, moś asonal al lick.	Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick.		a a a	Perennial types scarce or absent. Yellow- green, short-term bloom may be present.	or absent. Yellow- n may be present.	4
					Excé	Excellent total	11			U	Good total	tal =				Fair total =	tal =			Poor total =	
Stream type	be	A1 A2	A3 A3	A4	A5 en of	A6 B1	B2 50.45	B3	B4	B5 1	B6 (C1 C2	2 C3	C4	C5	C6	D3 I	D4	D5 D6	Grand total =	
Fair (Mod. unstable	unstable													-		86-105	2	01	01	Existing	
Poor (Unstable)	able)	48+ 48+	- 130+	+ 133+	143+	111+ 59+		⁴⁶ 2	85+	89+	- 19+ -	62+ 62+ Ef E	+ 106+	+	11 11 1	106+	133+ 1: CF	133+	133+ 126+	stream type = *Dotential	
Good (Stable)	le)		_	_		L)	5 40-63	Ű	60-85	0	0	5	~	~	8	85-107	N	85-107		stream type =	
Fair (Mod. unstable Poor (Linstable)	Instable	64-86 64-86 87+ 87+	6 64-86 87+	6 64-86 - 87+	64-86 7 87+	76-96 76-96 97+ 97+	96 64-86 + 87+	3 86-105 106+	86-105 106+	111-125 11 ⁻	111-125 116 126+ 13	116-130 96-110 131+ 111+	10 61-78 + 79+	8 61-78 - 79+	108-120 121+	108-120 121+	113-125 108 126+ 1	108-120 121+		Modified channel stability rating =	nel – D
		-	-	-	-	-	+	1		4	+	+	-		tating is	adjusted to	potentia	ıl strear	*Rating is adjusted to potential stream type, not existing.	6	0

Figure 3-7. Streambank erodibility criteria showing conversion of measured ratios and bank variables to a BEHI rating. Use **Worksheet 3-11** variables to determine BEHI score.

Worksheet 3-11. Form to calculate Bank Erosion Hazard Index (BEHI) variables and an overall BEHI rating. Use Figure 3-7 with BEHI variables to determine BEHI score.

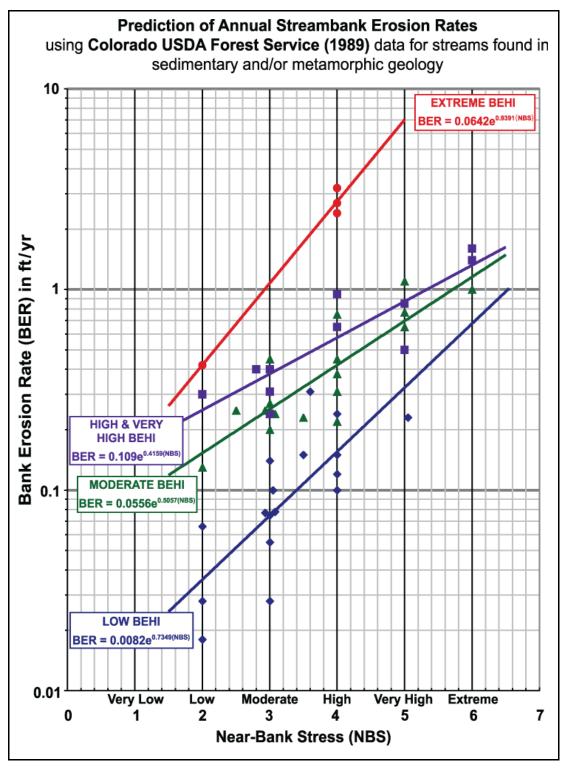
Copyright © 2008 Wildland Hydrology

River Stability Field Guide page 3-54

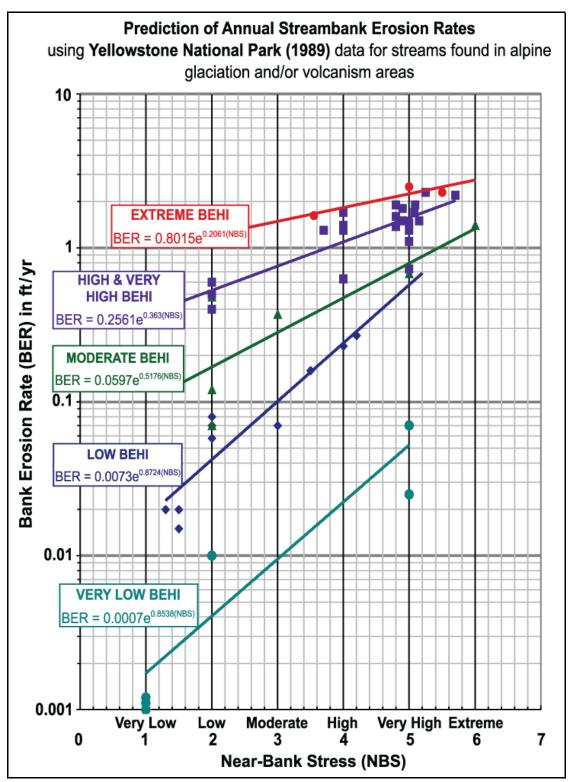
Worksheet 3-12. Various field methods of estimating Near-Bank Stress (NBS) risk ratings to calculate erosion rate.

erosion	10101									
			Estim	ating Nea	r-Bank St	ress (NB	S)			
Stream:					Location:					
Station:				S	tream Type:		١	Valley Type:		
Observers: Da										
	Methods for Estimating Near-Bank Stress (NBS)									
(1) Chanr	1) Channel pattern, transverse bar or split channel/central bar creating NBS Level I Reconaissance									
(2) Ratio of radius of curvature to bankfull width (R _c / W _{bkf}) Level II									prediction	
(3) Ratio of pool slope to average water surface slope (S_p/S)										
					d _{nb} / d _{bkf})		Level III		prediction	
					τ _{bkf})		Level III		prediction	
					^c bkf)		Level IV		lation	
_	ty promes				/or discontinue					
Level	(1)				-channel)			-		
Le	.,	Chute cutoffs	, down-valley	meander mig	ration, conver	ging flow		NI	BS = Extreme	
		Radius of	Bankfull		Near-Bank					
	(2)	Curvature	Width W _{bkf}	Ratio R _c /	Stress					
	()	R _c (ft)	(ft)	W _{bkf}	(NBS)	1				
Ξ		Dool Slope	Average		Near-Bank Stress		Dom	inant	T	
Level II	(3)	Pool Slope S _p	Average Slope S	Ratio S _p / S	(NBS)			nk Stress		
Ľ										
					Near-Bank	1			L	
	(4)	Pool Slope	Riffle Slope	Ratio S _p /	Stress					
		Sp	S _{rif}	S _{rif}	(NBS)	1				
		Near-Bank			Near-Bank					
	(5)	Max Depth	Mean Depth	Ratio d _{nb} /	Stress					
_	()	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)	1				
Level III				Near-Bank			Bankfull		1	
-ev		Near-Bank		Shear			Shear		Near-Bank	
-	(6)	Max Depth	Near-Bank	Stress τ_{nb} (Mean Depth	Average	Stress τ_{bkf} (Ratio τ_{nb} /	Stress	
	(0)	d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Slope S	lb/ft ²)	τ_{bkf}	(NBS)	
>				Near-Bank						
Level IV	(7)		lient (ft / sec	Stress						
Lev	(,)	/ f	t)	(NBS)	1					
					<u> </u>					
		Cor	verting Va	lues to a l	Near-Bank	Stress (NE	S) Rating			
Near-B	ank Str	ess (NBS)				ethod numb		-	-	
ratings			(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Very Low			N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50	
Low			N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 – 1.05	0.50 - 1.00	
Moderate			N/A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60	
High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00		
	Very Hi	-	(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40	
	Extrem	ne	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40	
				Overall N	lear-Bank S	Stress (NB	S) rating			

Copyright © 2008 Wildland Hydrology


River Stability Field Guide page 3-72

Stream:	Location:							
Graph Used:		Total Bar	nk Length (ft):	Date:				
Observers:	Valley Type:			Stream Type:				
(1) Station (ft)	(2) BEHI rating	(3) NBS rating	(4) Bank	(5) Length of	(6) Study bank		(8) Erosion	
	(Worksheet 3-11) (adjective)	(Worksheet 3-12) (adjective)	erosion rate (Figure 3-9 or 3-10) (ft/yr)	bank (ft)	height (ft)	subtotal [(4)×(5)×(6)] (ft ³ /yr)	Rate (tons/yr/ft) {[(7)/27] × 1.3 / (5)}	
1.								
2.								
3.								
4.								
5.								
6.								
7.								
8.								
9.								
10.								
11.								
12.								
13.								
14.								
15.					Total			
Sum erosion s	Erosion (ft ³ /yr)							
Convert erosion in ft^3/yr to yds^3/yr {divide Total Erosion (ft^3/yr) by 27}					Total Erosion (yds ³ /yr)			
Convert erosio by 1.3}	Total Erosion (tons/yr)							
Calculate eros (tons/yr) by tot	ion per unit leng al length of stre			Erosion	Total Erosion (tons/yr/ft)			


Worksheet 3-13. Summary form of annual streambank erosion estimates for various study reaches.

Copyright © 2008 Wildland Hydrology

Figure 3-9. Relationship of BEHI and NBS to predict annual streambank erosion rates from Colorado data for streams found in sedimentary and/or metamorphic geology.

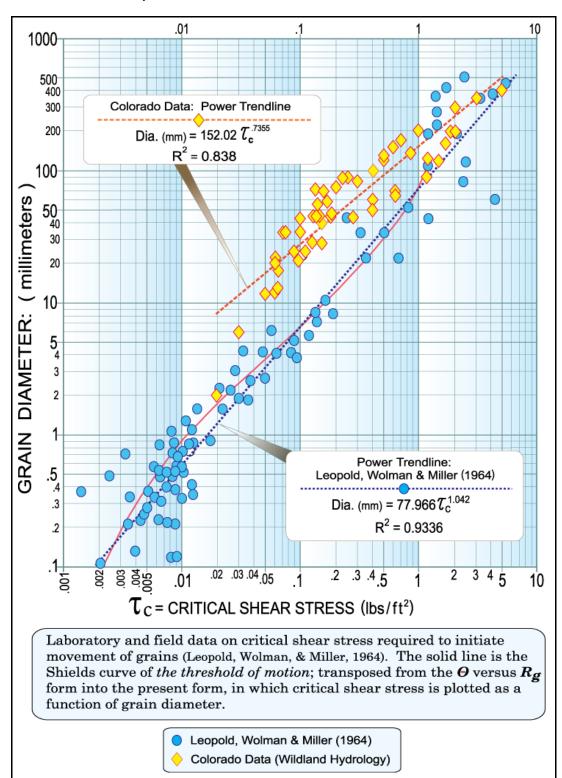


Figure 3-10. Relationship of BEHI and NBS to predict annual streambank erosion rates from Yellowstone National Park data for streams found in alpine glaciation and/or volcanism geology.

Stream:		Stream Type:							
Location:		Valley Type:							
Observers:		Date:							
Enter Req	uired Infor	mation for Existing Condition							
	D ₅₀ Riffle bed material D ₅₀ (mm)								
	D ₅₀	h_{50} Bar sample D ₅₀ (mm)							
	D _{max}	Largest particle from bar sample (ft) (mm) 304.8 mm/ft							
	S	Existing bankfull water surface slope (ft/ft)							
	d	Existing bankfull mean depth (ft)							
1.65	γ_s	Submerged specific weight of sediment							
Select the	Appropria	te Equation and Calculate Critical Dimensionless Shear Stress							
	$D_{50}^{}/D_{50}^{^{}}$	Range: 3 – 7 Use EQUATION 1: $\tau^* = 0.0834 (D_{50} / D_{50}^{\wedge})^{-0.872}$							
	D _{max} /D ₅₀	Range: 1.3 – 3.0 Use EQUATION 2: $\tau^* = 0.0384 (D_{max}/D_{50})^{-0.887}$							
	$ au^*$	Bankfull Dimensionless Shear Stress EQUATION USED:							
Calculate E	Bankfull Me	an Depth Required for Entrainment of Largest Particle in Bar Sample							
	d	Required bankfull mean depth (ft) $d = \frac{\tau * \gamma_s D_{max}}{S}$ (use D _{max} in ft)							
	Check:	Stable Aggrading Degrading							
Calculate Sample	Bankfull W	ater Surface Slope Required for Entrainment of Largest Particle in Bar							
	S	Required bankfull water surface slope (ft/ft) $\mathbf{S} = \frac{\mathcal{T} * \gamma_s \mathbf{D}_{max}}{\mathbf{d}}$ (use D _{max} in ft)							
	Check:	Stable Aggrading Degrading							
Sediment	Competen	ce Using Dimensional Shear Stress							
	Bankfull sl	hear stress $ au$ = γdS (lbs/ft ²) (substitute hydraulic radius, R, with mean depth, d)							
	γ = 62.4, o	d = existing depth, S = existing slope							
	Predicted	largest moveable particle size (mm) at bankfull shear stress $ au$ (Figure 3-11)							
	Predicted	shear stress required to initiate movement of measured D_{max} (mm) (Figure 3-11)							
	Predicted	mean depth required to initiate movement of measured D_{max} (mm) $d = \frac{\tau}{2}$							
		sted shear stress, γ = 62.4, S = existing slope γ S							
		S=							
	τ = predicted shear stress, γ = 62.4, d = existing depth γd								

Worksheet 3-14. Sediment competence calculation form to assess bed stability.

Figure 3-11. Critical shear stress required to initiate movement of bed-material grains following the Shields relation, as modified by field data from Colorado.

ΥT. ш separate material weights to grand total (Two largest particles) GRAND TOTAL SAMPLE WEIGHT SURFACE MATERIALS Be sure to add DATA Dia. Materials less than: No. 2 Bucket tare Bucket + materials weight Materials weight weight Date: Net Sample weights Sieve SIZE шШ Tare weight Ì Total Net Sample weights Tare weight Sieve SIZE шШ Ĵ Total Observers: Net Sample weights Tare weight Sieve SIZE шШ Ĵ Total Point / Side BAR-BULK MATERIALS SAMPLE DATA: Size Distribution Analysis Sieve SIZE mm Sample weights Net Tare weight Total Sieve SIZE mm Sample weights Net Tare weight Location: Î Sample location sketch Total Sieve SIZE mm Net Sample weights Tare weight A Total Sieve SIZE mm Net Sample weights Tare weight Ĵ Total Sieve SIZE mm Net Sample weights Tare weight Ĵ Total Sample location notes Net Catch Pan or BUCKET Sample weights Tare weight Ĵ Stream: Total % Grand total Accum. % =< Net wt. total 13 14 10 12 £ 15 9 ო ω ი 6 0 - 0 s 2 4 ß ഗചച ്ഗ σ <u>.</u> ~

Worksheet 3-15. Bar sample data collection and sieve analysis form.

River Stability Field Guide page 3-107

Copyright © 2008 Wildland Hydrology

Worksheet 3-16. Stability ratings for corresponding successional stage shifts of stream types. Check the appropriate stability rating.

Stream:	Stream Type:		
Location:	Valley Type:		
Observers:	Date:		
Stream type changes due to successional stage shifts (Figure 3-14)	Stability rating (check appropriate rating)		
Stream type at potential, $(C \rightarrow E)$, $(F_b \rightarrow B)$, $(G \rightarrow B)$, $(F \rightarrow B_c)$, $(F \rightarrow C)$, $(D \rightarrow C)$	Stable		
(E→C), (C→High W/d C)	Moderately unstable		
$(G \rightarrow F)$, $(F \rightarrow D)$, $(C \rightarrow F)$	Unstable		
$(C \rightarrow D)$, $(B \rightarrow G)$, $(D \rightarrow G)$, $(C \rightarrow G)$, $(E \rightarrow G)$	Highly unstable		

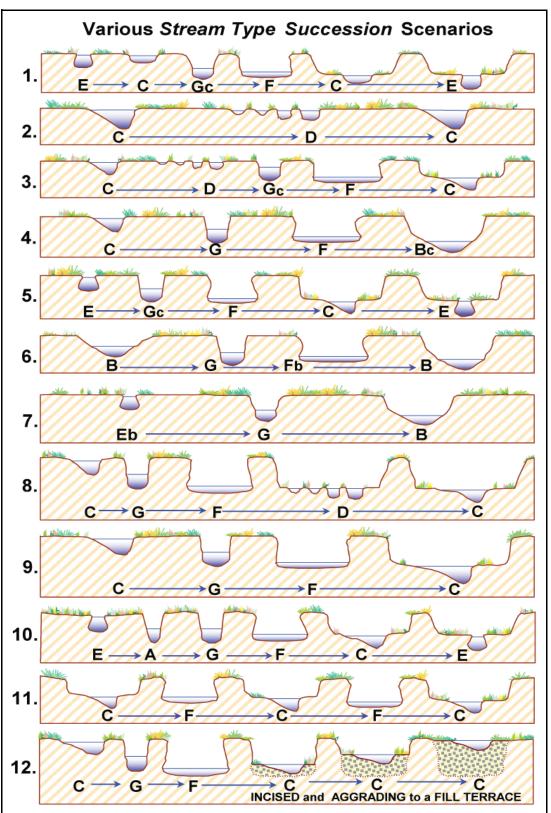


Figure 3-14. Various channel successional scenarios.

Worksheet 3-17. Lateral stability prediction summary.

Str	eam:			Stream Ty	/pe:		
Loo	cation:			Valley Ty	/pe:		
Ob	servers:			D	ate:		
L	ateral stability criteria		Lateral Stabilit	y Categories		Selected	
(c Ci	choose one stability ategory for each criterion –5)	Stable	Moderately unstable	Unstable	Highly unstable	points (from each row)	
1	W/d ratio state (Worksheet 3-8)	< 1.2	1.2 – 1.4	1.4 – 1.6	> 1.6		
	· ·	(2)	(4)	(6)	(8)		
2	Depositional pattern (Worksheet 3-5)	B1, B2	B4, B8	B3	B5, B6, B7		
	((1)	(2)	(3)	(4)		
3	Meander pattern (Worksheet 3-4)	M1, M3, M4		M2, M5, M6, M7, M8			
	(,	(1)		(3)			
4	Dominant BEHI / NBS (Worksheet 3-13)	L/VL, L/L, L/M, L/H, L/VH, M/VL	M/L, M/M, M/H, L/Ex, H/L	M/VH, M/Ex, H/L, H/M, H/H, VH/VL, Ex/VL	H/H, H/Ex, Ex/M, Ex/H, Ex/VH, VH/VH, Ex/Ex		
		(2)	(4)	(6)	(8)		
5	Degree of confinement (MWR / MWR _{ref})	0.8 – 1.0	0.3 – 0.79	0.1 – 0.29	< 0.1		
	(Worksheet 3-9)	(1)	(2)	(3)	(4)		
	Total points						
	Lateral stability category point range						
Overall lateral stability category (use total points and check stability rating)		Stable 7 – 9	Moderately unstable 10 – 12	Unstable 13 – 21 Г	Highly unstable > 21 □		

Worksheet 3-18. Vertical stability prediction for excess deposition or aggradation.

Str	eam:			Stream Type:					
Loc	cation:			Valley Type:					
Ob	servers:			Date:					
Vertical stability criteria (choose one stability category for each criterion 1–6)		Vertical Stability Categories for Excess Deposition / Aggradation							
		No deposition	Moderate deposition	Excess deposition	Aggradation	Selected points (fron each row)			
1	Sediment competence (Worksheet 3-14)	Sufficient depth and/or slope to transport largest size available	Trend toward insufficient depth and/or slope- slightly incompetent	Cannot move D_{35} of bed material and/or D_{100} of bar material	Cannot move D_{16} of bed material and/or D_{100} of bar or sub- pavement size				
		(2)	(4)	(6)	(8)				
2	Sediment capacity (POWERSED)	Sufficient capacity to transport annual load	Trend toward insufficient sediment capacity	Reduction up to 25% of annual sediment yield of bedload and/or suspended sand	Reduction over 25% of annual sediment yield for bedload and/or suspended sand				
		(2)	(4)	(6)	(8)				
3	W/d ratio state (Worksheet 3-8)	1.0 – 1.2	1.2 – 1.4	1.4 – 1.6	>1.6				
		(2)	(4)	(6)	(8)				
4	Stream succession states (Worksheet 3- 16)	Current stream type at potential or does not indicate deposition/ aggradation	(E→C)	$(C \rightarrow High W/d C),$ $(B \rightarrow High W/d B),$ $(C \rightarrow F)$	(C→D), (F→D)				
		(2)	(4)	(6)	(8)				
5	Depositional patterns (Worksheet 3-5)	B1	B2, B4	B3, B5	B6, B7, B8				
	· ,	(1)	(2)	(3)	(4)				
6	Debris / blockages (Worksheet 3-6)	D1, D2, D3	D4, D7	D5, D8	D6, D9, D10				
		(1)	(2)	(3)	(4)				
	Total points								
	Vertical stability category point range for excess deposition / aggradation								
Vertical stability for excess deposition / aggradation (use total points and check stability rating)		No deposition 10 – 14	Moderate deposition 15 – 20	Excess deposition 21 – 30	Aggradation >30 ┏				

Worksheet 3-19. Vertical stability prediction for channel incision or degradation.

Stream:			Stream Type:						
Location:			Valley Type:						
Observers: Date:									
Vertical stability	Vertical Stabi	lity Categories for	r Channel Incisio	n / Degradation	Selected				
criteria (choose one stability category for each criterion 1–5)	Not incised	Slightly incised	Moderately incised	Degradation	points (from each row)				
Sediment 1 competence (Worksheet 3-14)	Does not indicate excess competence	Trend to move larger sizes than D ₁₀₀ of bar or > D ₈₄ of bed	D ₁₀₀ of bed moved	Particles much larger than D ₁₀₀ of bed moved					
	(2)	(4)	(6)	(8)					
Sediment capacity 2 (POWERSED)	Does not indicate excess capacity	Slight excess energy: up to 10% increase above reference	Excess energy sufficient to increase load up to 50% of annual load	Excess energy transporting more than 50% of annual load					
	(2)	(4)	(6)	(8)					
Degree of channel 3 incision (BHR)	1.00 – 1.10	1.11 – 1.30	1.31 – 1.50	> 1.50					
(Worksheet 3-7)	(2)	(4)	(6)	(8)					
Stream successior 4 states (Worksheets 3-16 and 3-7)	indicate incision	If BHR > 1.1 and stream type has w/d between 5–10	If BHR > 1.1 and stream type has w/d less than 5	$(B\rightarrow G), (C\rightarrow G),$ $(E\rightarrow G), (D\rightarrow G)$					
,	(2)	(4)	(6)	(8)					
Confinement (MWF 5 MWR _{ref}) (Workshee	0.00 - 1.00	0.30 – 0.79	0.10 – 0.29	< 0.10					
3-9)	(1)	(2)	(3)	(4)					
Total points									
Vertical stability category point range for channel incision / degradation									
Vertical stability for channel incision/ degradation (use tota points and check stability rating)	Not incised 9 – 11	Slightly incised 12 – 18 □	Moderately incised 19 – 27	Degradation > 27					

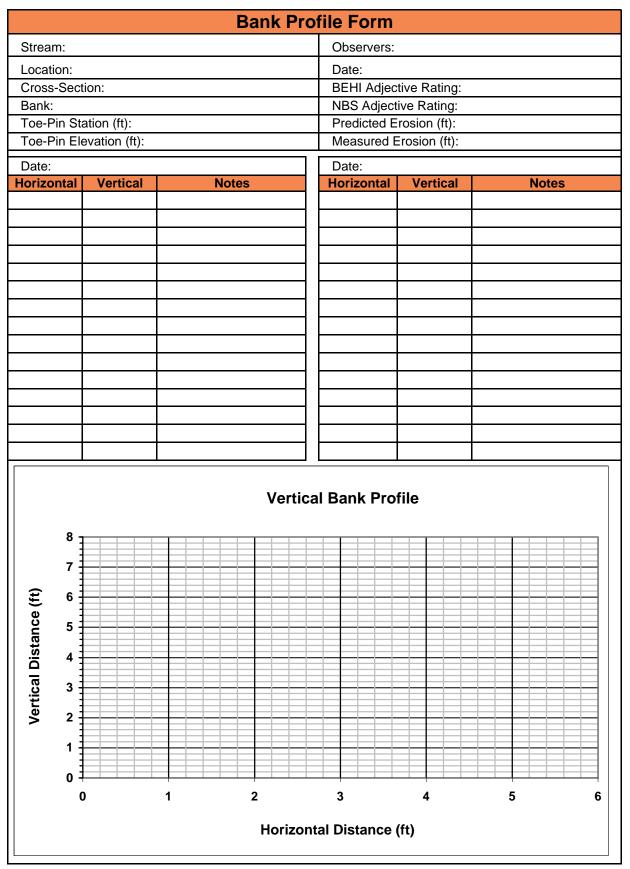
Worksheet 3-20. Channel enlargement prediction summary.

Str	Stream: Stream Type:								
Lo	Location: Valley Type:								
Ob	Observers: Date:								
	Channel enlargement	Char	nel Enlargement	Prediction Categ	ories	Selected			
((C	orediction criteria choose one stability category for each criterion -4)	No increase	Slight increase	Moderate increase	Extensive	points (from each row)			
1	Successional stage shift (Worksheet 3-16)	Stream type at potential, $(C \rightarrow E)$, $(F_b \rightarrow B)$, $(G \rightarrow B)$, $(F \rightarrow B_c)$, $(F \rightarrow C)$, $(D \rightarrow C)$	(C→High W/d C), (E→C)	(G→F), (F→D)	$(C \rightarrow D), (B \rightarrow G),$ $(D \rightarrow G), (C \rightarrow G),$ $(E \rightarrow G), (C \rightarrow F)$				
		(2)	(4)	(6)	(8)				
2	Lateral stability (Worksheet 3-17)	Stable	Moderately unstable	Unstable	Highly unstable				
		(2)	(4)	(6)	(8)				
3	Vertical stability excess deposition/ aggradation	No deposition	Moderate deposition	Excess deposition	Aggradation				
	(Worksheet 3-18)	(2)	(4)	(6)	(8)				
4	Vertical stability incision/ degradation (Worksheet 3-19)	Not incised	Slightly incised	Moderately incised	Degradation				
	(Worksheet o To)	(2)	(4)	(6)	(8)				
					Total points				
			Category point range						
Channel enlargement prediction (use total points and check stability rating)		No increase 8 – 10	Slight increase 11 – 16	Moderate increase 17 – 24	Extensive > 24				

Worksheet 3-21. Overall sediment supply rating determined from individual stability rating categories.

Stre	Stream: Stream Type:							
Loc	ation:			Valley Type:				
Obs	servers:			Date:				
pr co	verall sediment supply ediction criteria (choose prresponding points for the criterion 1–5)	Stability Rating		Points	Selected Points			
		Stable		1				
1	Lateral stability	Mod. unstab	ole	2				
	(Worksheet 3-17)	Unstable		3				
		Highly unsta	able	4				
	Vertical stability	No deposition	on	1				
2	excess deposition/	Mod. depos	ition	2				
2	aggradation	Excess dep	osition	3				
	(Worksheet 3-18)	Aggradatior	า	4				
	Vertical stability	Not incised		1				
3	channel incision/	Slightly inci	sed	2				
3	degradation	Mod. Incised	d	3				
	(Worksheet 3-19)	Degradation	1	4				
	Channel enlargement	No increase		1				
4	prediction (Worksheet	Slight increa	ase	2				
-	3-20)	Mod. increa	se	3				
		Extensive 4						
	Pfankuch channel	Good: stable		1				
5	stability (Worksheet 3-	Fair: mod u	nstable	2				
-	10)							
	,	Poor: unsta	ble	4				
				Total Points				
			Category p	ooint range				
ra	verall sediment supply ting (use total points and leck stability rating)	Low 5	Moderate 6 – 10	High 11 – 15	Very High 16 – 20			

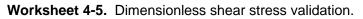
River Stability Field Guide page 3-124

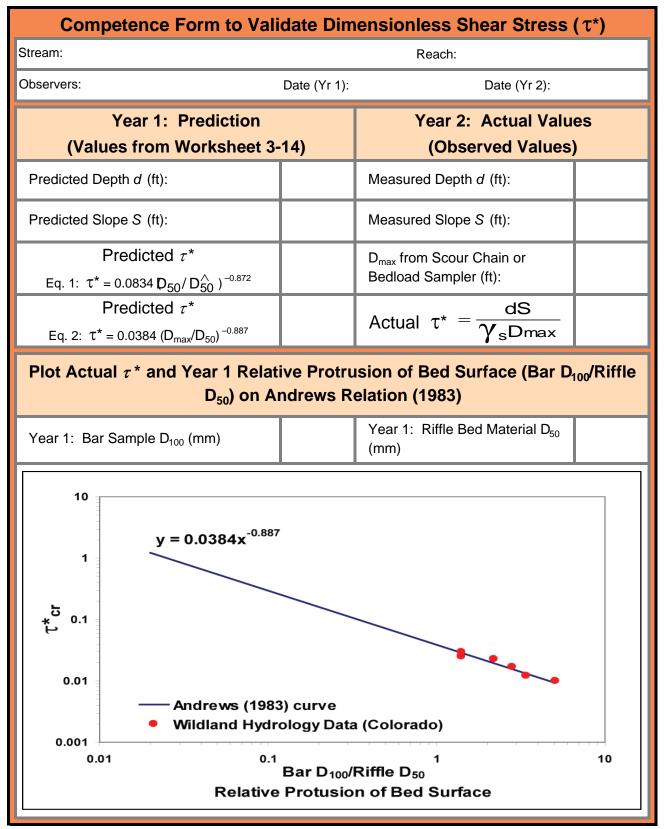

	Data Comparison Form							
Stream:			Reach:					
Observ	vers:	Date (Yr 1): Date (Yr 2):						
		Riffle	e XS:		Pool XS:	Glide XS:		
		Year 1	Year 2	Yea	ar 1 Year 2	Year 1	Year 2	
	Width (W _{bkf})							
ction ons	Mean Depth (d _{okf})							
s-se ensi	Width/Depth Ratio (W/d)							
Cross-section Dimensions	Cross-Sectional Area (A _{bkf})							
	Max Bankfull Depth (d _{max})							
벌	D ₃₅ (mm)							
Cou	D ₅₀ (mm)							
Pebble Count	D ₈₄ (mm)							
Ре	D ₁₀₀ (mm)							
		Year 1	Year 2			Year 1	Year 2	
Ξ	Meander Length Ratio (L _m /W _{bkf})			Pool	Length/Riffle Width			
Pattern	Radius of Curvature to				to Pool			
	Riffle Width (R _c /W _{bkf}) Meander Width Ratio				cing/Riffle Width			
	(W _{blt} /W _{bkf})			RITTIE	e Length/Riffle Width			
Devás	ad Bfaulusek Ohannad	Year 1	Year 2			Year 1	Year 2	
Revised Pfankuch Channel Stability Rating								
•	lity Rating			e	D ₃₅ (mm)			
	lity Rating Height Ratio			ample	D ₃₅ (mm) D ₅₀ (mm)			
Bank	lity Rating			ar Sample				
Bank- Point	lity Rating -Height Ratio start: end:			Bar Sample	D ₅₀ (mm)			
Bank- Point Sinuc	lity Rating -Height Ratio start: end: Bar Slope			ي م	D_{50} (mm) D_{84} (mm) D_{100} (mm) Max Riffle Depth			
Bank- Point Sinuc	lity Rating -Height Ratio start: end: Bar Slope osity (k)			ي م	D ₅₀ (mm) D ₈₄ (mm) D ₁₀₀ (mm)			
Bank- Point	lity Rating -Height Ratio start: end: Bar Slope osity (k) Riffle Slope Ratio (S _{rif} /S)			Dimensionless Max Depth Ratios Bar Sample	$\begin{array}{c} D_{50} \mbox{ (mm)} \\ D_{84} \mbox{ (mm)} \\ D_{100} \mbox{ (mm)} \\ \end{array}$ Max Riffle Depth Ratio (d_{maxrif}/d_{bkf}) Max Run Depth			

Worksheet 4-1. Summary of annual data comparisons and time-trend change.

Copyright © 2008 Wildland Hydrology

River Stability Field Guide page 4-8


Worksheet 4-2. Bank profile and bank erosion summary data form.



	Streambank Erosion Validation							
St	Stream: Reach:							
Observers: Date - Yr 1: Date - Yr 2:								
		Year 1: Predictio	'n	Year 2: Actual Va (Observed Value				
		BEHI Rating		BEHI Rating				
le XS:		NBS Rating		NBS Rating				
Riffle		Predicted Erosion (ft/yr) using Appropriate Curve (e.g., Colorado or Yellowstone Curve)		Measured Erosion from Bank Pins and Bank Profile (ft/yr)				
		BEHI Rating		BEHI Rating				
Glide XS:		NBS Rating		NBS Rating				
Glid		Predicted Erosion (ft/yr) using Appropriate Curve (e.g., Colorado or Yellowstone Curve)		Measured Erosion from Bank Pins and Bank Profile (ft/yr)				
Γ		BEHI Rating		BEHI Rating				
Pool XS:		NBS Rating		NBS Rating				
Poo		Predicted Erosion (ft/yr) using Appropriate Curve (e.g., Colorado or Yellowstone Curve)		Measured Erosion from Bank Pins and Bank Profile (ft/yr)				
R	Plot Measured Erosion Values According to their Respective BEHI and NBS Ratings on Appropriate Curve; e.g., Colorado Curve (Figure 4-8) or Yellowstone Curve (Figure 4-9)							

Worksheet 4-3. Streambank erosion validation.

Worksheet 4-4. Field form to document scour chain results and corresponding bed-elevation changes.

movement of grains (Leopold, Wolman, & Miller 1964). The solid line is the Shields curve of the threshold of motion, transposed from the Θ versus R_g form into the present form, in which critical shear stress is plotted as a function of grain diameter. 3 4 5 5 ö Laboratory and field data on critical shear stress required to initiate Power-Trendline: Leopold, Wolman & Miller 1964 0:0 Ò 100 (lbs./sqft.) Dia. = 77.966 $\tau_{c}^{1.042}$ c R² = .9336 .3 .4 **5** Leopold, Wolman & Miller: 1964
 Colorado Data (Wildland Hydrology) T_{c} = CRITICAL SHEAR STRESS: Colorado Data: Power Trendline .03 .04 .05 Dia. (mm) = $152.02 T_c^{.7365}$ = .838 8 5 5 009 100 100 Ò 200 r00. 50 30 20 500 300 200 8 9 S. 'n 00 GRAIN DIAMETER: (millimeters) Competence Form to Validate Dimensional Shear Stress (τ^*) Year 2: Actual Values Using Largest particle measured (D_{max}) and the Corresponding (Observed Values) Date (Yr 2): Plot Bankfull Shear Stress au on Shields/Colorado Relation Measured largest size particle D_{max} (mm) from scour chain or Bankfull shear stress $(\gamma = 62.4)$ bedload measurement Measured Slope S (ft): Measured Depth d (ft): Reach: $\tau = \gamma dS$ Date (Yr 1): (Values from Worksheet 3-14) Prediction Predicted largest moveable particle Bankfull Shear Stress (au) yS ₹ size at bankfull shear stress (mm) 7**d** j V ŝ Predicted Depth d (ft) Predicted Slope S (ft) Year 1: Observer Stream:

Worksheet 4-6. Dimensional shear stress validation.